
Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2799

ISSN: 0974-5823 Vol. 6 No. 3 December, 2021

International Journal of Mechanical Engineering

Storage, Distribution, and Query Processing RDF

Data in Apache Spark and GraphX: A Review Survey
Wria Mohammed Salih Mohammed1,2,*, Alaa Khalil Jumaa1

¹Technical college of Informatics, Sulaimani Polytechnic University, Sulaimani 46001, Kurdistan Region, Iraq
2College of Base Education, University of Sulaimani, Street 1- Zone 501 Sulaimani, Kurdistan Region, Iraq

* Corresponding Authors

Abstract

The term “Semantic Web” refers to W3C’s vision of the Web

of linked. The goal of the Semantic Web is to make Internet

data machine-readable. Resource Description Framework

(RDF) and Web Ontology Language are used to enable the

encoding of semantics with the data. RDF is the basic core of

the semantic web which allows the machine to exploit and

understand data. It is a model to interchange data on the

World Wide Web. Also, it extends the structure of the web

links by creating the relationship among things and links.

SPARQL Protocol and RDF Query (SPARQL) is a query

language for RDF.

The main challenge in the data processing and analysis field is

how to store and process a huge amount of data efficiently.

Storing Big data needs too much hard disk space and

sometimes the processing time is not satisfied properly. As a

result of this, big data technologies are invented, these

techniques can be used to store and process massive data

using distributed file systems. Some of Big data techniques

are used for storing and managing huge amounts of data like

Apache Hadoop and others which are used for processing

these data like MapReduce and Apache Spark.

This paper attempted to obtain benefits from mixing both

emergency research area Semantic web and Big data

technologies, the real challenge is how to use RDF graph-

based with Apache Spark GraphX. This paper also includes a

state-of-art for RDF and Spark GraphX, and a survey on how

to store, distribute and query RDF data using Spark GraphX.

Keywords : RDF, RDFS, Spark, SPARQL, GraphX,

Semantic Web, Hadoop. HDFS, Big Data.

1- Introduction

RDF is a typical data model for the description of resources

that are available on the Web and their relationship together. It

is recommended by World Wide Web Consortium (W3C).

RDF is a common model for exchanging data on the web and

the Triple-store is an RDF database. RDF has three main

associations which are Subject, Predicate, and Object.

Furthermore, SPARQL is the most well-known query

language for RDF, which is also defined by W3C, it can work

on querying massive RDF data. RDF can have Big data

characteristics including veracity, velocity, volume, and

variety. It can see that RDF data is highly varied with plenty

of different types of data from many sources. The increasing

of the RDF volume brings the challenge to solve the issue of

storing, querying, and distributing big RDF data [1]. Big data

technologies solved the problem of storing and processing

huge data using Apache Hadoop and MapReduce. One of the

main drawbacks of MapReduce is, instead of storing data on

memory, it stores it on the disk. As a result, it affects slow

processing querying. On the other hand, Resilient Distributed

Dataset (RDD) in Spark has solved this issue which allows

storing in memory. Spark can analyze graph data, machine

learning, stream processing, and so on [19][3].

The main goal of this survey is how to use semantic web

datasets with Big data technologies. Particularly, using RDF

data with Hadoop, Map-reduce, Spark, and GraphX. In their

theoretical aspects, how can store, query, and process large-

scale semantic web data in a distributed method. The

remaining sections of this paper are arranged as follows: In

section 2, there is an explanation of semantic web data

including RDF, RDFS and SPARQL. It also has the structure

of RDF graph and OWL. In section 3, it is an overview of

Apache Spark including GraphX, it also includes why Spark

is chosen in this paper rather than MapReduce. Section 4, is

the survey about the usage of semantic web data with Apache

Spark, MapReduce, and GraphX. In section 5, it has a

discussion about the papers which are used for the survey,

followed by section 6 which includes the conclusion and

future direction.

2- Semantic Web Data

The Semantic web was firstly mentioned by Tim Berners-Lee

[4], it uses to make technologies to interpret the web of data,

as well as, it provides a set of common interoperability data

formats that can be used over the various platforms [5]. The

term “Semantic Web” refers to W3C’s sight for linked data for

the web. Building data storage on the web can be enabled by

semantic web technologies. In another word, the Semantic

web is an extension of the current web, that makes data to

have meaning. This improves the capability of people and

computers to work together. One of the main purposes of web

3.0 is to define the method of connecting, exposing, and

sharing data that use URIs (Uniform Resource Identifier) on

the Web [8]. The Semantic web can write rules and build

vocabularies. RDF, OWL, SPARQL, and SKOS are

technologies that empowered linked data [1]. The Core of the

semantic web is a generic and flexible language that allow to

combination and represent data from different domain source.

This language is called RDF. RDF is the linked data of the

semantic web which store data in a triple format (subject,

predicate, and object). The Predicate is the relationship

between subject and object. Subject and predicate have to be

URI, but the object can be either URI or literal as shown in

Figure 2.

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2800

Figure 1: RDF Graph[15]

An RDF Graph can have different syntaxes such as N-Triple,

RDF/XML, Notation-3, and Turtle. The RDF can be more

structured and usable by adding some common vocabularies

which are called RDF Schema (RDFS) vocabularies. OWL is

also performing a function similar to RDFS, OWL is also

including more common vocabularies [6][7]. Furthermore, the

Resource Description Framework in Attribute (RDFa) is

adding attributes to HTML which allows rich metadata to be

embedded with the website. There are two types of RDFa

formats, JSON-LD (JavaScript Object Notation for Linked

Data) and Microdata [5].

The Semantic web architecture, which was built by Tim

Berners-Lee, is illustrated in many types of research. But in

brief, it has four layers shown in Figure 2 [8]:

- XML (eXtensible Markup Language), it represents data.

- RDF, shows the meaning of data.

Figure 2: Semantic Web layers [8]

- Ontology, shows the proper common satisfaction on the

meaning of the data.

Logical: it shows brilliant reason with the meaning of data.

SPARQL is the well-known query language for RDF data in

the simplest form. SPARQL query makes up of RDF triple

patterns. It can query multiple datasets using complex queries

[9].

3- Apache Spark and GraphX

Apache Spark is a cluster computing system based on in-

memory storage. It is based on Apache Hadoop MapReduce

algorithms, but dissimilar to MapReduce, Spark always stores

intermediate and the output results of spark jobs in memory

[10]. Spark has data abstraction called RDDs. It is a fault-

tolerant collection of partitioned objects across a cluster of

machines. Usually, any RDD provides parallel transformation

(groupBy, join or filter) that could be detected to recover the

RDD data [25]. RDD is a read-only data collection, it is an

immutable dataset. It is enriching for having the operations to

handle the data [13]. Spark has four common libraries, such as

Spark SQL, Spark GraphX, Spark Streaming, and Spark ML-

lib. It is capable of leveraging the Hadoop ecosystem, e.g.,

HDFS, YARN, HBase, S3 [11][14]. The ecosystem of Spark

is described in Figure 3.

Figure 3:Apache Spark Echo System [12].

In Apache Spark, data can be automatically divided by the

master device on the cluster. Thus, the number of partitions

can be chosen by users. It reduces the network transferring

when it partitions data.

Many libraries can be used with Spark to analyze big data.

Originally, Spark is written in Scala. However, another

programming language can be used with Spark API such as

Java, Python and R. Usually, using Scala with Spark can be

more adequate because Spark can support Scala firstly and the

size of the Scala code is less than another language in Spark

[12].

 GraphX is on the top of the Spark, it is a library to process

graphs. It computes the model distribution to have common

data structure processing including graph data or grouping

and It works with in-memory RDDs [14]. GraphX makes up

both directed adjacency structure and user-defined attributes

associated with each edge and vertex. Usually, programs in

GraphX show transformations from one to another from

edges, vertices, or both in the context [16]. GraphX can have

multiple graphs which can attach to each edge and vertex

attribute. It also supports the computation of the graph

because it has the basic set of operators including Join

Vertices, Sub-graph, MapReduce Triplets, optimal transition

Pregel API. It also has graphical analysis tasks and graphical

algorithms including PageRank, triangle Counting [2].

Internally Graph consists of RDD collections: VertexRDD is a

collection of vertices storing unique key properties. EdgeRDD

is an edge collection that has the edge properties for the

source and destination vertices. EdgeRDD and VertexRDD

make GraphX supports many common challenges on graphs

which are not easy to implement by other techniques. The

same index data structures are used to collect edges and

vertices. GraphX includes triplet view which is used for graph

computation. A triplet has an edge with its sources and

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2801

destination properties as shown in Figure 4. The

neighborhood of vertices is built easily using triplets[22].

Usually, any triplet consists of two functions: sendMsg and

mergeMsg functions. SendMsg is a map function, it can apply

on the triplet to send messages to destination or source

vertices of the triplet. On the other hand, mergeMsg is a

reduced function, it collects the message values which are

sent by sendMsg functions. AggregateMessages can use both

sendMsg and mergeMsg functions to build new VertexRDD

[22].

4- Literature Survey

There are several researches using RDF in Big data

technologies, particularly Apache Spark GraphX. In this

section, the relevant recently published works are discussed

and we showed how the Storage, Partition, and Queries

operations are managed in those works.

In [17], the authors attempt to show a comprehensive study to

compare four different SPARQL strategies, also different

datasets and benchmark queries have been utilized with the

different techniques with Spark. Firstly, SPARQL SQL is used

which rewrites SPARQL into SQL queries and they are

evaluated using Spark SQL engine. Secondly, SPARQL RDD

uses Spark RDD with SPARQL with the large triple set.

Thirdly, SPARQL DF is tabular data with specific relational

operators. Finally, SPARQL Hybrid allows the query

optimizer on data partitioning to mix local partitioning and

broadcast joins. As a result, they received a result and they

emphasize a hybrid query that improved the query

performance in most cases.

In [18], they proposed Spark which has faster processing of

RDF dataset. They used SQL queries on RDF data for

evaluation. As well as, they gave two approaches to partition

data on the cluster. This approach is used to decrease the

number of intermediate results and transmit data over the

network clusters.

On the other hand, in [19] the researchers proposed a method

for investigating SPARQL queries using the GraphX analytic

tools. They used tools to create a form of subject-predicate-

object which is a graph-like structure. Also, they used looping

edges for evaluating the properties of the data stored on

nodes. In contrast, they try to reduce the loop edge to run

faster and reduce sending messages. Furthermore, they try to

change the query plan generator. As a result, they try to

analyze the triple patterns using common SPARQL keywords

such as FILTER, OPTIONAL, and so on.

In [20], the researchers proposed Subset Property Table (SPT)

which is a relational partitioning scheme, this method is used

to address the issues of query efficiency, query patterns, and

reducing loading with pre-processing data. Also, the proposed

system can reduce query input and join operation by

clustering further partitions more than the existing Property

Table method. They combined both Subset Property Table

with Vertical Partition methods for storing RDF datasets.

In [21], Albahli used Apache Spark to load and query massive

data, also, he attempted to evaluate the performance of queries

using selection, sorting, filtering multiple attributes. The

queries using distributed SPARQL on Spark GraphX are

performed and he could find which stages of the query

pipeline can be improved. This pipeline can include a load

Graph, pattern of Basic Graph, and calculation. The main

purpose of Albanhli’s paper is to decrease the time of the

loading graph, as a result, whole processing reduces the time.

In [22], the algorithm of matching the sub-graph is suitable

with SPARQL queries is proposed. The researchers used large

datasets to show the scalability of the system. Their algorithm

shows RDF data as a graph using RDDs in GraphX. This can

handle large amounts of RDF datasets and GraphX can

partition the dataset. Each vertex has three properties, such as

label, mach_track table (M_T), and an endFlag. As a result,

the subject/object has value provided by the label. endFlag is

set to true if the paths are made from a sequence of match

BGP triples. Endflag detects if the vertex is located at the end

of a path.

In [23], the authors used Apache HBase as one of the bases to

distribute and store graph-based RDF data. Spark context is

also proposed by this paper, and they experience the LUBM

benchmark to show the originality of their work. In the first

step, Two RDFS rules (SubClassOf and SubPropertyOf) are

stored in the master node. In the second step, there are four

important steps:

1- The key-value of RDD is initialized using accessing IR

data models from HBase, this is called RDD(IR).

2- the operator of Map and Filter are used to provide the IR

model. This can match at least one SubPropertyOf rule and

run.

3- filter and map operator are called to execute (SubClassOf,

Domain, and Range) of RDFS rules to obtain new rdf:type.

4- three above step results are mixed to obtain the final

reasonable results.

The architecture of framework is explained in figure 3.

[24] introduces SparkRDF and elastic discrete to process

semantic graphs with memory distribution. It affects to

decrease high input/ output communications for partitioning

platform. This technique uses the SPARQL query on Spark.

All the results are distributed in memory to speed up the

process of joining. This is effective to the search space and

memory overhead. It divides the graph of RDF into multi-

layer sub-graphs based on relations and classes.

Figure 5: The architecture of framework [23]

Figure 4: Triplet view [22]

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2802

In [25], they introduce SPARQL on Spark with GraphX (S2X)

which is Hadoop based SPARQL query, they try to apply the

matching of the SPARQL basic graph pattern which is graph-

parallel while other functions are executed in a data-parallel

method. This work tries to combine both data-parallel and a

graph-parallel to query with SPARQL on the Hadoop which

has RDF. This introduces the RDF property graph for

GraphX, as well as, they built the algorithm of vertex-centric

to basic graph pattern (BGP) match.

The authors in [25] attempted to propose an efficient method

of distribution to match the query of answer sub-graph that

uses MapReduce on RDF graphs. They use two techniques to

improve their algorithms, one of them is RDF property

filtering which is used to decrease intermediate results. And

another algorithm is to improve the query performance using

postponing the Cartesian product operations. These two

techniques are used in an algorithm which is called StarMR

which is a scalable and efficient distributed algorithm which

is based on star decomposition.

Storage

The storage can be a relational database using the

intermediate result to compile the RDF to a relational

database, for instance, [18] uses MySQL with Spark which

are works on the master node. The master node controls the

clusters and the worker process the data distribution on the

cluster. Furthermore, a new storage schema can be built using

mixing Property Table with Vertical Partition as proposed in

[20]. Also, it can be seen that existing data sources can be

used, for example [21] used the DBPedia dataset, they used

DBPedia for massive datasets, and for the few nodes graph,

they created manually. They converted the DBPedia dataset

which is Turtle format into N-Triple format experiments.

In [23] Hadoop cluster using HBase are be used for storing

large-scaled RDF data storage environment. Additionally, all

file indexes with joins can be stored using the HDFS

technique [24]. The data can be arranged to store in a

distributed manner, [26] stored in distributed adjacency list,

they can find the neighbor N information for any vertex v. the

vertices shows in the position of a subject which can be stored

in the first column. For instance, Baghdad has a neighbor

which is {<country, Iraq>}

Data partition

It can be seen that in [18], there is a way to reduce the

network communication among the nodes of the cluster, they

implemented a partitioning approach using Apache Spark to

lessen the network communication among the cluster. This

approach is appropriate to apply to massive RDF data. The

clustering can be divided into two different partitioning

techniques, one of them is irrelevant filed which can be

partitioned, and another is used on fields that can be used in

SQL queries.

 On the other hand, two approaches can be combined to build

new data partitioning technique, for instance, in [20] both

Vertical Partitioning and Property Table are mixed. As a

result, new data partitioning is produced. Also, the query can

be partitioned for better performance, [21] the query can be

distributed for instance SPARQL. This query processing can

be divided into three main stages. First, loading the graphs,

patterning graphs, and finally is the calculation of the result.

Loading of graphs takes around 65% of the execution time.

[23] uses HBase for storage and partitioning according to the

structure of graph-based. This also has a distribution of RDFS

data in memory using SPARK RDD techniques.[24] created a

vertical partitioning based on classes and relations which is

called MESG (Multi-layer Elastic SubGraph). This connects

predicate indexes to class indexes. As a result, Triple Pattern

(TP) has a smaller index file, and it made it easy to query with

SPARQL.

Querying

In [18], query SQL on RDF dataset is applied, the necessity of

clustering has become common. But also, SPARQL can

compile into Spark SQL for instance. The author in [20]

create a compiler that applied using Flex and Bison which can

transfer the SPARQL query to Spark SQL.

Furthermore, in [21] SPARQL is used with Spark and the

author compared it with Jena results. As a result, they can find

that it improves query performances, and reduces the time of

loading data. They divided querying into three types, the first

of them is a simple query and the second is an aggregation

function on the dataset to compute the average, frequency

and, so on, and the third one is querying with joins.

 Also, [22] is based on subgraph matching and they used

Basic Graph Pattern (BGP) queries. However, [23] used

RDFS rules to map and filter operators to obtain a reasonable

result as a query.

[24] Resilient Discreet SubGraph (RDSG) collects index files

and intermediate results (IR), it distributed memory and query

computed on large clusters easily using the basic operations

such as RDSG_Filter, RDSG_Join, RDSG_Preparation, and

RDSG_Gen. Querying on RDF graph using subgraph

matching is used by [26]. this is performed by a distributed

algorithm based on a decomposition star called StarMR.

5- Discussion

Apache Hadoop can be used to store big data in a distributed

file system. However, the processing of the data using

Hadoop MapReduce is not satisfactory as Spark. Because

Apache Spark runs 100x faster than Hadoop MapReduce [27].

Nowadays, researchers mostly concentrated on Spark more

than Hadoop MapReduce, for instance, in [18] Apache Spark

is used for processing RDF data, they used two different

methods for distribution data on the cluster.

On the other hand, when a combination between RDF graph

triples and Apache Spark, there are several issues that come

up, for instance, scalability, query efficiency, query

optimization time, the query which can work for all types of

query patterns, decreasing the time of data loading and pre-

processing [20][27]. For instance, in [17], they use SPAQL

with Spark including SPARQL SQL, SPARQL RDD, and

SPARQL DF. SQL, RDD, and DF, which are parts of Spark,

are used with SPARQL. However, these techniques have

limitations, for instance, SPARQL RDD has less efficiency

when the broadcast join is cheaper. It reads the whole dataset

for a triple when there is a big dataset with a small joining.

Furthermore, SPARQL DF has a problem with partitioning,

because it is difficult to distribute subject, predicate, and

object. As a result, SPARQL Hybrid, which is proposed by

[17], allows mixing joins and query optimization for existing

distributed data. Even though, it can be seen that the

distribution of the big graph data can be done in GraphX

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2803

using different files for edges and nodes, for instance,

[19]collects the nodes with their properties and store them in a

single file. As well, all edges are stored in another file. There

is another method for distributing RDF data by making

Property Table in subsets, and this mixes with the Vertical

Partitioning method to having a new storage schema, this

method is also translated SPARQL into Spark SQL, Spark

SQL can be used for structured datasets [20].

Another major problem with the traditional data storage on a

single machine is not accurate enough, because it has a

limitation of processing time and hardware resources. That is

why cluster processing is significantly important. Even

though with using SPARQL query or analysis, linear SPARQL

query has a limitation, it means when semantic data has

SPARQL query with a single node processing, it cannot

process whole data at once, it needs distribution process, that

is why Apache Spark GraphX library has distribution

processing, and it has three separated stages, including graph

loading, Basic Graph Pattern and Result calculation [21]. In

contrast, SPARQL with Basic Graph Pattern according to [22]

has some limitations such as restricting the position of query

variables to subjects and objects.

SPARQL over GraphX is a new graph processing that is

developed over Spark. GraphX can combine the beneficial

aspects from the combination between graph-parallel and

data-parallel [22]. In [22], Basic Graph Pattern has been used

for querying, however, it has limitations for instance the

position of query variables has restricting because it only has

subjects or objects.

6- Conclusion and Future direction

Semantic web data continuously produces huge volumes of

diverse and heterogeneous data. On the other hand, due to the

data volume issue, traditional Semantic web technologies

cannot be stored or processed inefficient method. As a result,

storing, distributing, and processing RDF data remains a

challenging task.

The semantic web already satisfied the characteristics of big

data technologies. This paper provides a state-of-art about

Semantic web data and big data technologies, particularly,

RDF, SPARQL, Hadoop, Spark and GraphX. Also, it provides

a survey from recent papers which have recent development

in combining both emergence research areas. This paper can

be concluded with follows:

It can be noticed from the reviewed papers that SPARQL can

be used mostly for querying big RDF data. Furthermore, there

are several common SPARQL keywords, such as FILTER,

OPTIONAL and so on, which are used for graph/sub-graph

pattern matching. In SparkRDF, SPARQL is used, as well as,

the distribution of SPARQL can be used to reduce loading

time. Furthermore, Hybrid SPARQL is also utilized to

optimize queries on existing distributed data. It can be noticed

that there is a compiler to convert SPARQL to SQL for Spark.

Another challenge of using the Semantic web with big data, it

works on using reducing intermediate results. It is possible to

uses the rules of RDF can be distributed, it works on

initializing the key-value of RDD. The future direction from

this survey is to reduce time loading and improve

performance and query processing. This can use GraphX,

which is based on Spark, with RDF graph-based data which

has pattern graph matching using SPARQL as the main query

language for RDF data. Also, the file can be stored using

Apache Hadoop and GraphX. Vertex and Nodes of the

GraphX can be dedicated for each part of RDF data.

 6- References

[1] “Semantic Web - W3C.”

https://www.w3.org/standards/semanticweb/ (accessed

Oct. 13, 2021).

[2] R. C. Maheshwar and D. Haritha, “Survey on high-

performance analytics of bigdata with apache spark,”

Proc. 2016 Int. Conf. Adv. Commun. Control Comput.

Technol. ICACCCT 2016, no. 978, pp. 721–725, 2017,

doi: 10.1109/ICACCCT.2016.7831734.

[3] M. Banane and A. Belangour, “Towards a new scalable

big data system semantic web applied on mobile

learning,” Int. J. Interact. Mob. Technol., vol. 14, no. 1,

pp. 126–140, 2020, doi: 10.3991/ijim.v14i01.10922.

[4] TIM BERNERS-LEE; JAMES HENDLER; ORA

LASSILA, “The Semantic Web,” Circ. Linguist. Apl. a

la Comun., vol. 73, no. May, pp. 303–314, 2001, doi:

10.5209/CLAC.59071.

[5] S. Kanza and J. G. Frey, “A new wave of innovation in

Semantic web tools for drug discovery,” Expert Opin.

Drug Discov., vol. 14, no. 5, pp. 433–444, 2019, doi:

10.1080/17460441.2019.1586880.

[6] P. Pauwels, S. Zhang, and Y. C. Lee, “Semantic web

technologies in AEC industry: A literature overview,”

Autom. Constr., vol. 73, pp. 145–165, 2017, doi:

10.1016/j.autcon.2016.10.003.

[7] S. A. Khan and R. Bhatti, “Semantic Web and ontology-

based applications for digital libraries: An investigation

from LIS professionals in Pakistan,” Electron. Libr., vol.

36, no. 5, pp. 826–841, 2018, doi: 10.1108/EL-08-2017-

0168.

[8] A. Bakhouyi, R. Dehbi, M. Banane, and M. Talea, A

Semantic Web Solution for Enhancing the

Interoperability of E-Learning Systems by Using Next

Generation of SCORM Specifications, vol. 1102 AISC.

Springer International Publishing, 2020.

[9] I. Abdelaziz, R. Harbi, Z. Khayyat, and P. Kalnis, “A

survey and experimental comparison of distributed

SPARQL engines for very large RDF data,” Proc. VLDB

Endow., vol. 10, no. 13, pp. 2049–2060, 2017, doi:

10.14778/3151106.3151109.

[10] J. Fu, J. Sun, and K. Wang, “SPARK-A Big Data

Processing Platform for Machine Learning,” Proc. -

2016 Int. Conf. Ind. Informatics - Comput. Technol.

Intell. Technol. Ind. Inf. Integr. ICIICII 2016, pp. 48–51,

2017, doi: 10.1109/ICIICII.2016.0023.

[11] J. Yu, Z. Zhang, and M. Sarwat, “Spatial data

management in apache spark: the GeoSpark perspective

and beyond,” Geoinformatica, vol. 23, no. 1, pp. 37–78,

2019, doi: 10.1007/s10707-018-0330-9.

[12] H. K. Omar and A. K. Jumaa, “Big Data Analysis Using

Apache Spark MLlib and Hadoop HDFS with Scala and

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2804

Java,” Kurdistan J. Appl. Res., vol. 4, no. 1, pp. 7–14,

2019, doi: 10.24017/science.2019.1.2.

[13] Z. Han and Y. Zhang, “Spark: A Big Data Processing

Platform Based on Memory Computing,” Proc. - Int.

Symp. Parallel Archit. Algorithms Program. PAAP, vol.

2016-Janua, pp. 172–176, 2016, doi:

10.1109/PAAP.2015.41.

[14] M. Assefi, E. Behravesh, G. Liu, and A. P. Tafti, “Big

data machine learning using apache spark MLlib,” Proc.

- 2017 IEEE Int. Conf. Big Data, Big Data 2017, vol.

2018-Janua, pp. 3492–3498, 2017, doi:

10.1109/BigData.2017.8258338.

[15] A. Clara Kanmani, V. Suma, and N. Guruprasad,

“Hybrid data model of PACE and quadruple: An

efficient data model for cloud computing,” Int. J.

Comput. Aided Eng. Technol., vol. 13, no. 1–2, pp. 73–

100, 2020, doi: 10.1504/IJCAET.2020.108108.

[16] I. S. Reynold S. Xin, Joseph E. Gonzalez, Michael J.

Franklin, “GraphX: A Resilient Distributed Graph

System on Spark,” 2013.

[17] H. Naacke, B. Amann, and O. Curé, “SPARQL graph

pattern processing with apache spark,” 5th Int. Work.

Graph Data Manag. Exp. Syst. GRADES 2017 - Co-

located with SIGMOD/PODS 2017, pp. 1–7, 2017, doi:

10.1145/3078447.3078448.

[18] A. H. Atashkar, N. Ghadiri, and M. Joodaki, “Linked

data partitioning for RDF processing on Apache Spark,”

2017 3rd Int. Conf. Web Res. ICWR 2017, pp. 73–77,

2017, doi: 10.1109/ICWR.2017.7959308.

[19] G. Gombos, G. Racz, and A. Kiss, “Spar(k)ql: SPARQL

evaluation method on spark GraphX,” Proc. - 2016 4th

Int. Conf. Futur. Internet Things Cloud Work. W-FiCloud

2016, pp. 188–193, 2016, doi: 10.1109/W-

FiCloud.2016.48.

[20] M. Hassan and S. K. Bansal, “Data Partitioning Scheme

for Efficient Distributed RDF Querying Using Apache

Spark,” Data Partitioning Scheme Effic. Distrib. RDF

Querying Using Apache Spark Mahmudul, pp. 24–31,

2019, doi: 10.1109/ICOSC.2019.8665614.

[21] S. Albahli, “Efficient distributed SPARQL queries on

Apache Spark,” Effic. Distrib. SPARQL Queries Apache

Spark, vol. 10, no. 8, pp. 564–568, 2019, doi:

10.14569/ijacsa.2019.0100874.

[22] B. Kassaie, “SPARQL over GraphX,” no. April, 2017,

[Online]. Available: http://arxiv.org/abs/1701.03091.

[23] R. Li, Q. Zhang, H. Wang, and G. Wang, “Distributed

RDFS Rules Reasoning for Large-Scaled RDF Graphs

Using Spark,” Proc. Int. Conf. Serv. Sci. ICSS, vol. 0, pp.

158–162, 2016, doi: 10.1109/ICSS.2016.28.

[24] X. Chen, H. Chen, N. Zhang, and S. Zhang, “SparkRDF:

Elastic discreted RDF graph processing engine with

distributed memory,” Proc. - 2015 IEEE/WIC/ACM Int.

Jt. Conf. Web Intell. Intell. Agent Technol. WI-IAT 2015,

vol. 1, pp. 292–300, 2016, doi: 10.1109/WI-

IAT.2015.186.

[25] F. B. B, M. Mehrotra, and H. Vo, “S2X: Graph-Parallel

Querying of RDF with GraphX,” Int. Work. Data

Manag. Anal. Med. Healthc., vol. 9579, no. 2015, pp.

155–168, 2015, doi: 10.1007/978-3-319-41576-5.

[26] X. Wang et al., “Efficient Subgraph Matching on Large

RDF Graphs Using MapReduce,” Data Sci. Eng., vol. 4,

no. 1, pp. 24–43, 2019, doi: 10.1007/s41019-019-0090-

z.

[27] S. M. Deshpande and R. S. Shirsath, “Ranking of

Product on Big Data using Apache Spark,” vol. 4, no.

cPGCON, pp. 8001–8006, 2017.

