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Abstract- The Interacting Boson Model-2 is used to find out 

whether Hamiltonian is best for studying Tellurium nuclei. The 

IBM-2 has been extensively used to describe the medium heavy 

nuclei quadrupole collective states. When this version of the 

model is used, the proton and neutron variables are 

distinguished. Because it is essential to explicitly describe the 

proton and neutron variables. Using the best-fitted values of 

parameters in the Hamiltonian of the IBM-2, we have 

calculated energy levels and electric transition probabilities for 
122-130Te isotopes. The theoretical results are compared to 

experimental data, they are found to be in good agreement. The 
122-130Te isotopes are of the U (5) symmetry. Also, there is no 

sign of triaxiality in 122-130Te nuclei.  
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INTRODUCTION 

The vibrational model, the quasiparticle model, and the 

interacting boson approximation model [1-2] have all been used 

to calculate theoretical calculations on the even Te (Tellurium) 

nuclei [3], which show general collective nuclei conclusion. 

Beta and gamma spectroscopic measurements, as well as 

neutron capture and inelastic scattering experiments, have all 

been used to study the spectra of these nuclei [4].  

In recent years, the even-mass tellurium isotopes have been 

extensively studied both theoretically and experimentally, with 

a particular focus on the interpretation of experimental data 

using collective models [5-14]. The semi-microscopic model, 

the two-proton core coupling model [15-16], and the dynamic 

deformation model [17] and the interacting boson model-2 [18] 

have all been used to investigate energy levels, electric 

quadrupole moments, and B(E2) values.          

The IBM-2 confirms the geometric distinctions while also 

broadening them to include all nuclei, not only spherical and 

deformed ones, but also γ- unstable and transitional ones. This 

model was introduced in which seems to be relevant for the 

explanation of deformed nuclei showing triaxial features.  

The aim of this work is to calculate the energy levels and 

reduced electric transition probabilities B(E2) in 122-130Te 

isotopes, using the IBM-2 with the help of Casimir operators, 

and to compare the results with the experimental data.   

 

 

 

IBM-2 HAMILTONIAN  

The IBM-2 formalism is a general model for describing the 

Hamiltonian parameters, with the neutrons and protons degrees 

of freedom explicitly taken into consideration. It has the 

advantage of being closer to a microscopic theory, but it 

requires significantly larger matrices to be diagonalized.  

    The pairs are treated as bosons in which proton boson with J 

= 0 are denoted by sπ(sv) and J = 2 are denoted by dπ(dv). The 

number of protons is designed by Nπ, and the neutron Nv, in the 

closed shells of the particle space in which more than half of 

the shell is filled.  

The creation operators for neutron and proton bosons  

   b†
π, jm = s†

π, d†
π, m (m = -2, -1, …,2) and    b†

v, jm = s†
v, d†

v, m (m 

= -2, -1, …,2) 

The operators for bosons annihilation like this 

   b~
π, jm = sπ, d~

π, m (m = -2, -1, …,2) and    b~
v, jm = s~

v, d~
v, m (m 

= -2, -1, …,2) 

             Nπ = √5[d†
π × d~

π] (0) + s†
π sπ 

The Hamiltonian for Interacting boson model-2 is written as 

[19] 

H = Hπ + Hv + 

Vπv (1) 

Where Hπ, Hv are the proton and neutron boson Hamiltonian, 

the last term Vπv is the neutron-proton interaction.  

A basic Hamiltonian [20] which can be written as  

H = ɛπ d†
π d~

π + ɛv d†
v d~

v + Vππ + Vvv + k Qπ. Qv + Mπv    (2) 

Here ɛ is the d-boson energy and ɛπ, ɛv are proton and neutron 

energy respectively, and are thought to be equal to ɛv = ɛπ = ɛ, 

k is the strength of the quadrupole interaction between neutron 

and proton bosons.  

In the IBM-2, the quadrupole moment operator is given by [21]: 

Qρρ = (s† d~ + d† s) (2)
ρ + χρ (d† d~) (2)

ρ                                 (3) 

Where ρ = π or v, Qρρ is the quadrupole deformation parameter 

for protons (ρ = π) and neutrons (ρ = v).  Vvv is the neutron-

neutron d-boson interactions and Vππ is the proton-proton d-

boson interactions.  

This term is given by: 

Vρρ = ∑J = 0,2,4 (1/2) CLρ (2J + 1)1/2 {[d† × d†] (2)
ρ × [d~ × d~] (2)

ρ} 

(0)      (4) 

     The last term Mπv is the Majorana interaction, which 

accounts for symmetry energy which has the form 
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Mπv = -∑k = 1,3 2ξk {[d†
π × d†

π] (k) × [d~
π × d~

π] (k)} + ξ2 (s†
v d†

π - 

d†
v s†

π) (2) (s~
v d~

π - d~
v s~

π) (2)                       (5) 

Now, the IBM-2 Hamiltonian in terms of Casimir operators 

H = ɛ [C1, U (5)] + [C2, U (5)] vv + [C2, U (5)] ππ + k [C2, SU (3)] ρρ + 

[C2, SO (6)]    (6) 

The Casimir invariant operators of U (6) and its subgroups in 

the pattern are given below: 

C1, U (5) = nd, C2, U (5) = nd (nd + 4),  

C2, SO (6) = N (N + 4) – {√5 [d† × d†] (0) - s†s†} {√5 [d~ × d~] (0) – 

ss} 

C2, SU (3) = ∑μ (-1) μ Qμ Q-μ, Where Qμ = {dμ
† s~ + s† dμ

~ - √7/2 [ 

d† × d~] μ
 (2)} 

The E2 transitions that are one of the important factors within 

the collective nuclear structure. So, the reduced electric 

transitions can also be analysed in the framework of the IBM-2 

and the most general E2 transition operator can be written as 

[22] 

T(E2) = eρ [s†
ρ × d~

ρ + d†
ρ × s~

ρ] (2) + χρ (d†
ρ × d~

ρ) (2) 

            = ev Qv + eπ Qπ                                               (7) 

Where χρ is a dimensional coefficient and eρ is the effective 

quadrupole charges depending on the boson number N and 

they can any value to fit the experimental result.  

The B(E2) strength for the E2 transitions is given by: 

B (E2; Li→Lf) = 1/ (2Li + 1)1/2 |< Lf || Tm(E2) || Li>|2         (8) 

 

RESULTS AND DISCUSSION 

In theoretically, all factors in fitting the energy spectrum of a 

single nucleus can be adjusted independently. However, in 

order to limit the number of free parameters and in accordance 

with Subber et al [23] microscopic estimates, only ɛ and k are 

varying as a function to both of Nπ and Nv i.e., ɛ = ɛ (Nπ, Nv) 

and k = k (Nπ, Nv) is allowed. The other parameters depend only 

on Nπ or Nv i.e.,  

χπ = χπ (Nπ), χv = χv (Nv), CLπ = CLπ (Nπ) and CLv = CLv (Nv) 

     Thus, in isotopes chain, χπ is kept constant, whereas for two 

isotonic Te isotopes, χv, CLπ and CLv are kept constant in Table-

1. The isotopes 122-130Te have Nπ = 1, and Nv varies from 6 to 1, 

while the parameters k, χπ, χv and ɛ treated as free parameters 

and their values are estimated by fitting to the measured level 

energies. The best fit values for the Hamiltonian parameters are 

given in Table-1.  

 

Table-1: IBM-2 Hamiltonian parameters, all parameters in 

MeV units.  

 

     Using the parameters in Table-1, the estimated energy levels 

are shown in Table-2, along with experimental energy levels. 

As can be observed, there is a wide range of views between 

experiment and theory, and the general features are well 

reproduced. For high spin states, we observe a contradiction 

between theory and experiment. 

     The symmetry of the nucleus is determined by the energy 

ratio R4/2 = E (4+)/E (2+) of the energies of the first 4+ and 2+ 

states are good criteria for the shape transition [24]. The value 

of the energy ratio has the limiting value 2 for a quadrupole 

vibrator, 2.5 for a non-axial γ-soft rotor and 3.33 for an ideally 

symmetric rotor. The estimated values change from about 2.18 

to about 2.26, meaning that their structure seems to be varying 

from axial γ-soft to quadrupole vibrator O (6) → SU (5).  

     Because the Te nucleus has a vibrational-like character, we 

used the multiple expansion form of the Hamiltonian for our 

approximation, taking into account the dynamic symmetry 

location of the even-even Te nuclei at the IBM phase casten 

triangle, where their parameter seta is at the O (6) → SU (5) 

transition region and closer to SU (5) character. 

 

Table-2: Comparison of theoretical data with experimental 

results of IBM-2 energies for  

122-130Te isotopes. 

 

Now, the following table-3 is related to B(E2) values of some 

transitions for 122-130Te isotopes. In order to find the value of 

effective charge we have fitted the calculated absolute strength 

B (E2; 21
+ → 01

+) the transitions ground state band to the 

experimental ones. The values of the boson effective charges 

for all isotopes are determined by the experimental B (E2; 21
+ 

→ 01
+). The B (E2; 21

+ → 01
+) and B (E2; 41

+ → 21
+) values 

decreases as neutron number increases toward the middle of the 

shell. The value of B (E2; 21
+ → 01

+) is small because this 

transition is from quasi beta to ground state band. The energy 

levels and B(E2) values in 122-130Te isotopes, theoretical and 

experimental results [25-27] are good in agreement. 

 

  



Copyrights @Kalahari Journals  Vol. 6 No. 3(December, 2021) 

International Journal of Mechanical Engineering 

3031 

Table-3: Electric transition probabilities for 122-130Te in e2 b2 

units. 

 

 

 

CONCLUSION  

We have described the results of calculations for 122-130Te 

isotopes in terms of the neutron-proton interacting boson 

model-2 with the help of Casimir operators. There is good 

agreement between the theoretical and experimental results. 

Using the best fitted values of parameters in the Hamiltonian of 

the IBM-2, we have calculated energy levels and B(E2) values 

for 122-130Te isotopes. In IBM-2, electric transition probability 

B (E2; Ji
+ → Jf

+) calculations for even-even Te isotopes better 

in agreement with the experimental data. In IBM-2, all 122-130Te 

isotopes are of the U (5) symmetry in both cases of energy 

levels and B(E2) values. Also, in IBM-2, there is no signature 

of triaxiality in the 122-130Te isotopes. 
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