International Journal of Mechanical Engineering

Ng[#] – Homeomorphism in Neutrosophic Topological Spaces

¹Pious Missier S, ^{2*}Babisha Julit R L, ³Martina Jency J

¹ Head & Associate Professor, Department of Mathematics,

Don Bosco College of Arts and Science, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti,Tirunelveli) KeelaEral, Thoothukudi, TamilNadu, India.

²Research Scholar, Department of Mathematics,

G. Venkataswamy Naidu College,(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), Kovilpatti, Tamil Nadu, India.

³Assistant Professor, Department of Mathematics,

Patrician College of Arts and Science, Chennai, Tamilnadu, India.

* Corresponding Author : Babisha Julit R L

Abstract

The aim of this paper is to introduce the concepts of $\mathcal{N}g^{\#}$ – homeomorphism and strongly $\mathcal{N}g^{\#}$ – homeomorphism in Neutrosophic Topological Space. Further, the work establishes some of their related attributes.

Keywords: $\mathcal{N}g^{\#}$ - closed set, $\mathcal{N}g^{\#}$ - continuous function, $\mathcal{N}g^{\#}$ - irresolute function, $\mathcal{N}g^{\#}$ - homeomorphism, strongly $\mathcal{N}g^{\#}$ - homeomorphism.

AMS Mathematics Subject Classification - 06D72; 03E72

1 Introduction

Smarandache [9] introduced the idea of Neutrosophic set, and in 2014 Salama et.al. [20] initiated further studies into Neutrosophic closed sets and Neutrosophic continuous functions. Recently Pious Missier et.al.[15],[16],[13] introduced the concept of $\mathcal{N}g^{\#}$ – closed sets, continuous and irresolute mappings, closed and open mappings in Neutrosophic Topological Spaces. In this paper, we introduce $\mathcal{N}g^{\#}$ – homeomorphism and strongly $\mathcal{N}g^{\#}$ – homeomorphism in Neutrosophic Topological Spaces and investigate their properties.

2 Preliminaries

Definition 2.1 [9]

A Neutrosophic set $(\mathcal{N}S)$ $\mathcal{A}_{\mathcal{N}}$ is an object having the form $\mathcal{A}_{\mathcal{N}} = \{\langle x, \mu_{\mathcal{A}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x), \gamma_{\mathcal{A}_{\mathcal{N}}}(x) \rangle : x \in \mathcal{X} \}$ where $\mu_{\mathcal{A}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x)$ and $\gamma_{\mathcal{A}_{\mathcal{N}}}(x)$ represent the degree of membership, degree of indeterminacy and the degree of non-membership respectively of each element $x \in \mathcal{X}$ to the set $\mathcal{A}_{\mathcal{N}}$. A Neutrosophic set $\mathcal{A}_{\mathcal{N}} = \{\langle x, \mu_{\mathcal{A}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x), \gamma_{\mathcal{A}_{\mathcal{N}}}(x) \rangle : x \in \mathcal{X} \}$ can be identified as an ordered triple $\langle \mu_{\mathcal{A}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x), \gamma_{\mathcal{A}_{\mathcal{N}}}(x) \rangle$ in]-0,1+[on \mathcal{X} . **Definition 2.2** [20] A Neutrosophic topology (\mathcal{NT}) on a non-empty set \mathcal{X} is a family τ of Neutrosophic subsets in \mathcal{X} satisfies the following axioms:

- 1. $\mathbf{0}_{\mathcal{N}}, \mathbf{1}_{\mathcal{N}} \in \tau$
- 2. $R_{N_1} \cap R_{N_2} \in \tau$ for any $R_{N_1}, R_{N_2} \in \tau$
- 3. $\cup R_{N_i} \in \tau$ \forall $R_{N_i}: i \in I \subseteq \tau$

Definition 2.3 [20] Let $\mathcal{A}_{\mathcal{N}}$ be a $\mathcal{N}S$ in \mathcal{NTS} X_{\mathcal{N}}. Then

1. \mathcal{N} int $(\mathcal{A}_{\mathcal{N}}) = \bigcup \{ G: G \text{ is a } \mathcal{NOS} \text{ in } X_{\mathcal{N}} \text{ and } G \subseteq \mathcal{A}_{\mathcal{N}} \}$ is called a Neutrosophic interior of $\mathcal{A}_{\mathcal{N}}$.

2. $\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}) = \cap \{K: K \text{ is a } \mathcal{NCS} \text{ in } X_{\mathcal{N}} \text{ and } \mathcal{A}_{\mathcal{N}} \subseteq K\}$ is called Neutrosophic closure of $\mathcal{A}_{\mathcal{N}}$.

Definition 2.4 [11] A Neutrosophic set $\mathcal{A}_{\mathcal{N}}$ of a $\mathcal{NTS}(\mathcal{X}, \tau)$ is called a neutrosophic $\mathcal{N}\alpha gCS$ if $\mathcal{N}\alpha cl(\mathcal{A}_{\mathcal{N}}) \subseteq \mathcal{U}_{\mathcal{N}}$, whenever $\mathcal{A}_{\mathcal{N}} \subseteq \mathcal{U}_{\mathcal{N}}$ and $\mathcal{U}_{\mathcal{N}}$ is a \mathcal{NOS} in \mathcal{X} . The complement of $\mathcal{N}\alpha gCS$ is $\mathcal{N}\alpha gOS$.

Definition 2.5 [15] A Neutrosophic set $\mathcal{A}_{\mathcal{N}}$ of a \mathcal{NTS} (\mathcal{X}, τ) is called a Neutrosophic $g^{\#}$ -closed $(\mathcal{N}g^{\#}CS)$ if $\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}) \subseteq \mathcal{Q}_{\mathcal{N}}$ whenever $\mathcal{A}_{\mathcal{N}} \subseteq \mathcal{Q}_{\mathcal{N}}$ and $\mathcal{Q}_{\mathcal{N}}$ is $\mathcal{N}\alpha gOS$ in \mathcal{X} . The complement of $\mathcal{N}g^{\#}CS$ is $\mathcal{N}g^{\#}OS$.

Definition 2.6 [17] Let $\mathcal{A}_{\mathcal{N}}$ be a $\mathcal{N}S$ in \mathcal{NTS} \mathcal{X} . Then

1. $\mathcal{N}g^{\#}int(\mathcal{A}_{\mathcal{N}}) = \bigcup \{ G: G \text{ is a } \mathcal{N}g^{\#}OS \text{ in } \mathcal{X} \text{ and } G \subseteq \mathcal{A}_{\mathcal{N}} \}$ is called a Neutrosophic $g^{\#}$ – interior of $\mathcal{A}_{\mathcal{N}}$.

2. $\mathcal{N}g^{\#}cl(\mathcal{A}_{\mathcal{N}}) = \cap \{K: K \text{ is a } \mathcal{N}g^{\#}CS \text{ in } \mathcal{X} \text{ and } \mathcal{A}_{\mathcal{N}} \subseteq K\}$ is called Neutrosophic $g^{\#}$ - closure of $\mathcal{A}_{\mathcal{N}}$.

Definition 2.7 [16] A function $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ is said to Vol. 6 No. 3(December, 2021)

Copyrights @Kalahari Journals

be $\mathcal{N}g^{\#}$ – continuous function if $f_{\mathcal{N}}^{-1}(\mathcal{V}_{\mathcal{N}})$ is a $\mathcal{N}g^{\#}$ – closed set of (\mathcal{X}, τ) for every neutrosophic closed set $\mathcal{V}_{\mathcal{N}}$ of (\mathcal{Y}, ζ) .

Definition 2.8 [16] A function $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ is said to be Neutrosophic $g^{\#}$ – irresolute function if $f_{\mathcal{N}}^{-1}(\mathcal{V}_{\mathcal{N}})$ is a $\mathcal{N}g^{\#}CS$ of (\mathcal{X}, τ) for every $\mathcal{N}g^{\#}CS = \mathcal{V}_{\mathcal{N}}$ of (\mathcal{Y}, ζ) .

Definition 2.9 [17] A Neutrosophic Topological space (\mathcal{X}, τ) is called a $T_{\mathcal{N}}g^{\#}$ – space if every $\mathcal{N}g^{\#}CS$ in (\mathcal{X}, τ) is \mathcal{NCS} in (\mathcal{X}, τ) .

Definition 2.10 [18] Let (\mathcal{X}, τ) and (\mathcal{Y}, ζ) be two Neutrosophic topological spaces. A mapping $f_{\mathcal{N}}: (\mathcal{X}, \tau) \rightarrow$ (\mathcal{Y}, ζ) is called $\mathcal{N}g^{\#}$ – closed mapping $(\mathcal{N}g^{\#}CM \text{ for short})$ if $f_{\mathcal{N}}(\mathcal{A}_{\mathcal{N}})$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{Y}, ζ) for every \mathcal{NCS} $\mathcal{A}_{\mathcal{N}}$ of (\mathcal{X}, τ) .

Definition 2.11 [18] Let (\mathcal{X}, τ) and (\mathcal{Y}, ζ) be two Neutrosophic topological spaces. A mapping $f_{\mathcal{N}}: (\mathcal{X}, \tau) \rightarrow$ (\mathcal{Y}, ζ) is called $\mathcal{N}g^{\#}$ – open mapping $(\mathcal{N}g^{\#}OM \text{ for short})$ if $f_{\mathcal{N}}(\mathcal{A}_{\mathcal{N}})$ is $\mathcal{N}g^{\#}OS$ in (\mathcal{Y}, ζ) for every $\mathcal{NOS} \ \mathcal{A}_{\mathcal{N}}$ of (\mathcal{X}, τ) .

Definition 2.12 [13] Let (\mathcal{X}, τ) and (\mathcal{Y}, ζ) be two Neutrosophic Topological Spaces. A bijection $f_{\mathcal{N}}: (\mathcal{X}, \tau) \rightarrow (\mathcal{Y}, \zeta)$ is called Neutrosophic homeomorphism $(\mathcal{N} - \mathcal{HOM})$ for short) if $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are \mathcal{N} – continuous.

3 Neutrosophic g[#]- Homeomorphism

Definition 3.1 Let (\mathcal{X}, τ) and (\mathcal{Y}, ζ) be two Neutrosophic Topological Spaces. A bijection $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ is called Neutrosophic $g^{\#}$ – homeomorphism $(\mathcal{N}g^{\#} - \mathcal{HOM}$ for short) if $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}g^{\#}$ – continuous.

Theorem 3.2 Every $\mathcal{N} - \mathcal{HOM}$ is $\mathcal{N}g^{\#} - \mathcal{HOM}$ but not conversely.

Proof. Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a $\mathcal{N} - \mathcal{HOM}$, then $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N} -$ continuous. Since every $\mathcal{N} -$ continuous function is $\mathcal{N}g^{\#} -$ continuous, $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}g^{\#} -$ continuous. Hence $f_{\mathcal{N}}$ is $\mathcal{N}g^{\#} - \mathcal{HOM}$.

Example 3.3 Let $\mathcal{X} = \{l, m\}$ and $\mathcal{Y} = \{p, q\}$. Consider the Neutrosophic sets

$$\begin{split} \mathcal{M}_{\mathcal{N}_{1}} &= \{ \langle l, (0.3, 0.4, 0.6) \rangle, \langle m, (0.4, 0.3, 0.6) \rangle \}, \\ \mathcal{M}_{\mathcal{N}_{2}} &= \{ \langle p, (0.2, 0.3, 0.7) \rangle, \langle q, (0.3, 0.2, 0.7) \rangle \}. \end{split}$$

Now $(\mathcal{X}, \tau) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}$ and $(\mathcal{Y}, \zeta) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathcal{M}_{\mathcal{N}_{2}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathbf{1}_{\mathcal{N}}\}$ are Neutrosophic topological spaces. Then $\tau = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathbf{1}_{\mathcal{N}}\}$ and $\zeta = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}$ are \mathcal{NT} s on \mathcal{X} and \mathcal{Y} respectively. Define a bijection $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ by $f_{\mathcal{N}}(l) = p$ and Copyrights @Kalahari Journals

$$\begin{split} & f_{\mathcal{N}}(m) = q. \text{ Here } \mathcal{NCS}(\mathcal{X}) = \{ \mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}} \}, \mathcal{NCS}(\mathcal{Y}) = \\ & \{ \mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathbf{1}_{\mathcal{N}} \} = \mathcal{N}g^{\#}\mathcal{CS}(\mathcal{X}) = \mathcal{N}g^{\#}\mathcal{CS}(\mathcal{Y}). \text{ Here } \\ & f_{\mathcal{N}} \text{ is } \mathcal{N}g^{\#} - \mathcal{HOM}. \text{ Now } \mathcal{M}_{\mathcal{N}_{2}}^{c} \text{ is a } \mathcal{NCS} \text{ in } (\mathcal{Y}, \zeta) \text{ but } \\ & f_{\mathcal{N}}^{-1}(\mathcal{M}_{\mathcal{N}_{2}}^{c}) \text{ is not } a \ \mathcal{NCS} \text{ in } (\mathcal{X}, \tau). \text{ Therefore } f_{\mathcal{N}} \text{ is not } \\ & \mathcal{N} - \text{ continuous and hence } f_{\mathcal{N}} \text{ is not } \mathcal{N} - \mathcal{HOM}. \end{split}$$

Theorem 3.4 Every $\mathcal{NR} - \mathcal{HOM}$ is $\mathcal{Ng}^{\#} - \mathcal{HOM}$ but not conversely.

Proof. Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a $\mathcal{NR} - \mathcal{HOM}$, then $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N} -$ continuous. Since every $\mathcal{NR} -$ continuous function is $\mathcal{Ng}^{\#} -$ continuous, $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{Ng}^{\#} -$ continuous. Hence $f_{\mathcal{N}}$ is $\mathcal{Ng}^{\#} - \mathcal{HOM}$.

Theorem 3.5 Every $\mathcal{N}g^{\#} - \mathcal{HOM}$ is $\mathcal{N}G - \mathcal{HOM}$ but not conversely.

Proof. Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a $\mathcal{N}g^{\#} - \mathcal{HOM}$, then $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}g^{\#}$ - continuous. Since every $\mathcal{N}g^{\#}$ - continuous function is $\mathcal{N}\mathcal{G}$ - continuous, $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}\mathcal{G}$ - continuous. Hence $f_{\mathcal{N}}$ is $\mathcal{N}\mathcal{G} - \mathcal{HOM}$.

Example 3.6 Let $\mathcal{X} = \{l, m\}$ and $\mathcal{Y} = \{p, q\}$. Consider the Neutrosophic sets

 $\mathcal{M}_{\mathcal{N}_{1}} = \{ \langle \mathbf{l}, (0.1, 0.2, 0.8) \rangle, \langle \mathbf{m}, (0.2, 0.3, 0.8) \rangle \},\$

 $\mathcal{M}_{\mathcal{N}_2} = \{ \langle \mathsf{p}, (0.2, 0.3, 0.7) \rangle, \langle \mathsf{q}, (0.3, 0.3, 0.7) \rangle \}.$

Now $(\mathcal{X}, \tau) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathbf{1}_{\mathcal{N}}\}$ and $(\mathcal{Y}, \zeta) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}\}$ are Neutrosophic topological spaces. Then $\tau = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathbf{1}_{\mathcal{N}}\}$ and $\zeta = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}$ are $\mathcal{N}Ts$ on \mathcal{X} and \mathcal{Y} respectively. Define a bijection $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ by $f_{\mathcal{N}}(l) = p$ and $f_{\mathcal{N}}(m) = q$. Here, $\mathcal{N}CS(\mathcal{X}) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}\} = \mathcal{N}g^{\#}CS(\mathcal{X}), \quad \mathcal{N}CS(\mathcal{Y}) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathbf{1}_{\mathcal{N}}\}, \mathcal{N}g^{\#}CS(\mathcal{Y}) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}\} = \mathcal{N}GCS(\mathcal{Y}) = \mathcal{N}GCS(\mathcal{X}).$ Here $f_{\mathcal{N}}$ is $\mathcal{N}G - \mathcal{H}O\mathcal{M}$. Now $\mathcal{M}_{\mathcal{N}_{2}}^{c}$ is a $\mathcal{N}CS$ in (\mathcal{Y}, ζ) but $f_{\mathcal{N}}^{-1}(\mathcal{M}_{\mathcal{N}_{2}}^{c})$ is not a $\mathcal{N}g^{\#}CS$ in (\mathcal{X}, τ) . Therefore $f_{\mathcal{N}}$ is not $\mathcal{N}g^{\#}$ – continuous and hence $f_{\mathcal{N}}$ is not $\mathcal{N}g^{\#} - \mathcal{H}O\mathcal{M}$.

Theorem 3.7 Every $\mathcal{N}g^{\#} - \mathcal{HOM}$ is $\mathcal{N}\alpha g - \mathcal{HOM}$ but not conversely.

Proof. Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a $\mathcal{N}g^{\#} - \mathcal{HOM}$, then $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}g^{\#} -$ continuous. Since every $\mathcal{N}g^{\#} -$ continuous function is $\mathcal{N}\alpha g -$ continuous, $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}\alpha g -$ continuous. Hence $f_{\mathcal{N}}$ is $\mathcal{N}\alpha g - \mathcal{HOM}$.

Example 3.8 Let $\mathcal{X} = \{l, m\}$ and $\mathcal{Y} = \{p, q\}$. Consider the Neutrosophic sets

 $\mathcal{M}_{\mathcal{N}_1} = \{ \langle \mathbf{l}, (0.2, 0.3, 0.7) \rangle, \langle \mathbf{m}, (0.3, 0.4, 0.7) \rangle \},\$

 $\mathcal{M}_{\mathcal{N}_{2}} = \{ \langle \mathsf{p}, (0.3, 0.4, 0.6) \rangle, \langle \mathsf{q}, (0.4, 0.5, 0.6) \rangle \}.$

Now $(\mathcal{X}, \tau) = \mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathbf{1}_{\mathcal{N}}$ and $(\mathcal{Y}, \zeta) = \mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}$ are Neutrosophic topological spaces. Then $\tau = \mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathbf{1}_{\mathcal{N}}$ and $\zeta = \mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}$ are \mathcal{NT} s on \mathcal{X} and \mathcal{Y} respectively. Define a bijection

Vol. 6 No. 3(December, 2021)

$$\begin{split} &f_{\mathcal{N}}:(\mathcal{X},\tau) \to (\mathcal{Y},\zeta) \text{ by } f_{\mathcal{N}}(l) = p \text{ and } f_{\mathcal{N}}(m) = q. \text{ Here,} \\ &\mathcal{NCS}(\mathcal{X}) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}\} = \mathcal{Ng}^{\#}\mathcal{CS}(\mathcal{X}), \mathcal{NCS}(\mathcal{Y}) = \\ &\{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathbf{1}_{\mathcal{N}}\}, \mathcal{Ng}^{\#}\mathcal{CS}(\mathcal{Y}) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}\} = \\ &\mathcal{N}\alpha g\mathcal{CS}(\mathcal{Y}), \mathcal{N}\alpha g\mathcal{CS}(\mathcal{X}). \text{ Here } f_{\mathcal{N}} \text{ is } \mathcal{N}\alpha g - \mathcal{HOM}. \text{ Now} \\ &\mathcal{M}_{\mathcal{N}_{2}}^{c} \text{ is a } \mathcal{NCS} \text{ in } (\mathcal{Y},\zeta) \text{ but } f_{\mathcal{N}}^{-1}(\mathcal{M}_{\mathcal{N}_{2}}^{c}) \text{ is not } a \mathcal{N}g^{\#}CS \\ &\text{ in } (\mathcal{X},\tau). \text{ Therefore } f_{\mathcal{N}} \text{ is not } \mathcal{N}g^{\#} - \text{ continuous and hence} \\ &f_{\mathcal{N}} \text{ is not } \mathcal{N}g^{\#} - \mathcal{HOM}. \end{split}$$

Theorem 3.9 Every $\mathcal{N}g^{\#} - \mathcal{HOM}$ is $\mathcal{N}G\mathcal{P} - \mathcal{HOM}$ but not conversely.

Proof. Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a $\mathcal{N}g^{\#} - \mathcal{HOM}$, then $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}g^{\#}$ - continuous. Since every $\mathcal{N}g^{\#}$ - continuous function is $\mathcal{N}G\mathcal{P}$ - continuous, $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}G\mathcal{P}$ - continuous. Hence $f_{\mathcal{N}}$ is $\mathcal{N}G\mathcal{P} - \mathcal{HOM}$.

Example 3.10 Let $\mathcal{X} = \{l, m\}$ and $\mathcal{Y} = \{p, q\}$. Consider the Neutrosophic sets

$$\begin{split} \mathcal{M}_{\mathcal{N}_{1}} &= \{ \langle l, (0.2, 0.2, 0.8) \rangle, \langle m, (0.2, 0.3, 0.8) \rangle \}, \\ \mathcal{M}_{\mathcal{N}_{2}} &= \{ \langle p, (0.3, 0.3, 0.7) \rangle, \langle q, (0.3, 0.3, 0.7) \rangle \}. \end{split}$$

Now $(\mathcal{X}, \tau) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathbf{1}_{\mathcal{N}}\}$ and $(\mathcal{Y}, \zeta) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}\}$ are Neutrosophic topological spaces. Then $\tau = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathbf{1}_{\mathcal{N}}\}$ and $\zeta = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}$ are $\mathcal{N}\mathcal{T}$ s on \mathcal{X} and \mathcal{Y} respectively. Define a bijection $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ by $f_{\mathcal{N}}(l) = p$ and

$$\begin{split} & f_{\mathcal{N}}(m) = q. \quad \text{Here} \quad \mathcal{NCS}(\mathcal{X}) = \{ \boldsymbol{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \boldsymbol{1}_{\mathcal{N}} \} = \\ & \mathcal{Ng}^{\#}\mathcal{CS}(\mathcal{X}), \quad \mathcal{NCS}(\mathcal{Y}) = \{ \boldsymbol{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \boldsymbol{1}_{\mathcal{N}} \}, \\ & \mathcal{Ng}^{\#}\mathcal{CS}(\mathcal{Y}) = \{ \boldsymbol{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \boldsymbol{1}_{\mathcal{N}} \} = \mathcal{NGPCS}(\mathcal{Y}) = \\ & \mathcal{NGPCS}(\mathcal{X}). \text{ Here } f_{\mathcal{N}} \text{ is } \mathcal{NGP} - \mathcal{HOM}. \text{ Now } \mathcal{M}_{\mathcal{N}_{2}}^{c} \text{ is a } \\ & \mathcal{NCS} \text{ in } (\mathcal{Y}, \zeta) \text{ but } f_{\mathcal{N}}^{-1}(\mathcal{M}_{\mathcal{N}_{2}}^{c}) \text{ is not a } \mathcal{N}g^{\#}\text{CS in } (\mathcal{X}, \tau). \\ & \text{Therefore } f_{\mathcal{N}} \text{ is not } \mathcal{N}g^{\#} - \text{ continuous and hence } f_{\mathcal{N}} \text{ is not } \\ & \mathcal{Ng}^{\#} - \mathcal{HOM}. \end{split}$$

Theorem 3.11 Every $\mathcal{N}g^{\#} - \mathcal{HOM}$ is $\mathcal{NGS} - \mathcal{HOM}$ but not conversely.

Proof. Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a $\mathcal{N}g^{\#} - \mathcal{HOM}$, then $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}g^{\#}$ - continuous. Since every $\mathcal{N}g^{\#}$ - continuous function is \mathcal{NGS} - continuous, $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are \mathcal{NGS} - continuous. Hence $f_{\mathcal{N}}$ is $\mathcal{NGS} - \mathcal{HOM}$.

Example 3.12 Let $\mathcal{X} = \{l, m\}$ and $\mathcal{Y} = \{p, q\}$. Consider the Neutrosophic sets

$$\begin{split} \mathcal{M}_{\mathcal{N}_1} &= \{ \langle l, (0.1, 0.2, 0.9) \rangle, \langle m, (0.1, 0.3, 0.8) \rangle \}, \\ \mathcal{M}_{\mathcal{N}_2} &= \{ \langle p, (0.3, 0.3, 0.7) \rangle, \langle q, (0.4, 0.3, 0.7) \rangle \}. \end{split}$$

Now $(\mathcal{X}, \tau) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathbf{1}_{\mathcal{N}}\}$ and $(\mathcal{Y}, \zeta) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}\}$ are Neutrosophic topological spaces. Then $\tau = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathbf{1}_{\mathcal{N}}\}$ and $\zeta = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}$ are $\mathcal{N}\mathcal{T}s$ on \mathcal{X} and \mathcal{Y} respectively. Define a bijection $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ by $f_{\mathcal{N}}(l) = p$ and $f_{\mathcal{N}}(m) = q$ Here, $\mathcal{N}\mathcal{CS}(\mathcal{X}) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}\} = \mathcal{N}g^{\#}\mathcal{CS}(\mathcal{X}), \quad \mathcal{N}\mathcal{CS}(\mathcal{Y}) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}\} = \mathcal{N}GS\mathcal{CS}(\mathcal{Y}) = \mathcal{N}GS\mathcal{CS}(\mathcal{X}).$ Here $f_{\mathcal{N}}$ is $\mathcal{N}GS - \mathcal{H}\mathcal{O}\mathcal{M}.$

Copyrights @Kalahari Journals

Now $\mathcal{M}_{\mathcal{N}_2}^{c}$ is a \mathcal{NCS} in (\mathcal{Y}, ζ) but $f_{\mathcal{N}_2}^{-1}(\mathcal{M}_{\mathcal{N}_2}^{c})$ is not a $\mathcal{N}g^{\#} - CS$ in (\mathcal{X}, τ) . Therefore $f_{\mathcal{N}}$ is not $\mathcal{N}g^{\#} -$ continuous and hence $f_{\mathcal{N}}$ is not $\mathcal{N}g^{\#} - \mathcal{HOM}$.

Remark 3.13 The following diagram shows the relationships of $\mathcal{N}g^{\#} - \mathcal{HOM}$ with some other Neutrosophic homeomorphisms discussed in this section.

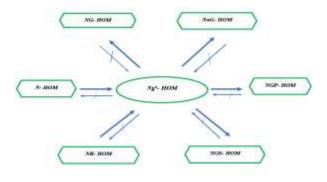


Figure 1

Here $A \rightarrow B$ means A implies B and Here $A \rightarrow B$ means A not implies B

Remark 3.14 Composition of two $\mathcal{N}g^{\#}$ – homeomorphism mappings need not be a $\mathcal{N}g^{\#}$ – homeomorphism.

Example 3.15 Let $\mathcal{X} = \{l, m\}, \mathcal{Y} = \{u, v\}$ and $\mathcal{Z} = \{p, q\}$. $\mathcal{M}_{\mathcal{N}_{1}} = \{ \langle l, (0.2, 0.2, 0.8) \rangle, \langle m, (0.3, 0.3, 0.7) \rangle \}$ $\mathcal{M}_{\mathcal{N}_2} = \{ \langle \mathbf{p}, (0.9, 0.8, 0.1) \rangle, \langle \mathbf{q}, (0.8, 0.9, 0.2) \rangle \}.$ Now $(\mathcal{X}, \tau) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}, (\mathcal{Y}, \zeta) =$ $\{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}\}$ and $(\mathcal{Z}, \eta) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathbf{1}_{\mathcal{N}}\}$ are Neutrosophic topological spaces. Then $\tau =$ $\{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathbf{1}_{\mathcal{N}}\}, \zeta = \{\mathbf{0}_{\mathcal{N}}, \mathbf{1}_{\mathcal{N}}\} \text{ and } \eta = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\} \text{ are }$ \mathcal{NT} s on \mathcal{X}, \mathcal{Y} and \mathcal{Z} respectively. Define a function $f_{\mathcal{N}}:(\mathcal{X},\tau) \to (\mathcal{Y},\zeta)$ by $f_{\mathcal{N}}(l) = u$ and $f_{\mathcal{N}}(m) = v$ and define a function $g_{\mathcal{N}}: (\mathcal{Y}, \zeta) \to (\mathcal{Z}, \eta)$ by $g_{\mathcal{N}}(u) = p$ and $g_{\mathcal{N}}(v) = q$. Then $f_{\mathcal{N}}$ and $g_{\mathcal{N}}$ are $\mathcal{N}g^{\#} - \mathcal{HOM}s$. Now define a function $(g_{\mathcal{N}} \circ f_{\mathcal{N}})$: $(\mathcal{X}, \tau) \rightarrow (\mathcal{Z}, \eta)$ by $f_{\mathcal{N}}(l) = p$ and $f_{\mathcal{N}}(m) = q$. Here $\mathcal{M}_{\mathcal{N}_1}^{c} =$ $\{\langle l, (0.8, 0.8, 0.4) \rangle, \langle m, (0.7, 0.8, 0.2) \rangle\}$ is a \mathcal{NCS} in (\mathcal{X}, τ) . But $(g_{\mathcal{N}} \circ f_{\mathcal{N}})(\mathcal{M}_{\mathcal{N}_1}^c) = \{ \langle p, (0.8, 0.8, 0.4) \rangle, \langle q, (0.7, 0.8, 0.2) \rangle \}$ is not a $\mathcal{N}g^{\#}CS$ in (\mathcal{Z},η) . Hence $(g_{\mathcal{N}} \circ f_{\mathcal{N}})^{-1}$ is not a $\mathcal{N}g^{\#}$ - continuous map. Therefore $(g_{\mathcal{N}} \circ f_{\mathcal{N}})$ is not $\mathcal{N}g^{\#}$ -НОМ.

Theorem 3.16 Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a bijective mapping. If $f_{\mathcal{N}}$ is $\mathcal{N}g^{\#}$ – continuous then the following statements are equivalent:

- 1. $f_{\mathcal{N}}$ is a $\mathcal{N}g^{\#}$ closed mapping.
- 2. $f_{\mathcal{N}}$ is a $\mathcal{N}g^{\#}$ open mapping.
- 3. $f_{\mathcal{N}}$ is $\mathcal{N}g^{\#}$ homeomorphism.

Vol. 6 No. 3(December, 2021)

Proof. (1) \Rightarrow (2) Let us assume that $f_{\mathcal{N}}$ be a bijective mapping and $\mathcal{N}g^{\#}CM$. Hence $f_{\mathcal{N}}^{-1}$ is $\mathcal{N}g^{\#}$ – continuous. Clearly every \mathcal{NOS} in (\mathcal{X}, τ) is $\mathcal{N}g^{\#}OS$ in (\mathcal{Y}, ζ) . Hence $f_{\mathcal{N}}$ is a $\mathcal{N}g^{\#}$ – open mapping.

(2) \Rightarrow (3) Let $f_{\mathcal{N}}$ be a $\mathcal{N}g^{\#}OM$. Then $f_{\mathcal{N}}^{-1}$ is $\mathcal{N}g^{\#} -$ continuous. Hence $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}g^{\#} -$ continuous mappings. Therefore $f_{\mathcal{N}}$ is $\mathcal{N}g^{\#} -$ homeomorphism.

(3) \Rightarrow (1) Let $f_{\mathcal{N}}$ is $\mathcal{N}g^{\#}$ – homeomorphism. Then $f_{\mathcal{N}}$ and $(f_{\mathcal{N}}^{-1})$ both are $\mathcal{N}g^{\#}$ – continuous mappings. Since every \mathcal{NCS} in (\mathcal{X}, τ) is $\mathcal{N}g^{\#}CS$ in (\mathcal{Y}, ζ) , $f_{\mathcal{N}}$ is a $\mathcal{N}g^{\#}$ – closed mapping. Hence proved.

Theorem 3.17 Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a $\mathcal{N}g^{\#} - \mathcal{HOM}$. Then $f_{\mathcal{N}}$ is a $\mathcal{N} - \mathcal{HOM}$ if (\mathcal{X}, τ) and (\mathcal{Y}, ζ) are $T_{\mathcal{N}}g^{\#} -$ spaces.

Proof. Let $\mathcal{M}_{\mathcal{N}}$ be a \mathcal{NCS} in (\mathcal{Y},ζ) . By hypothesis, $f_{\mathcal{N}}^{-1}(\mathcal{M}_{\mathcal{N}})$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{X},τ) . Since (\mathcal{X},τ) is $T_{\mathcal{N}}g^{\#}$ – space, $f_{\mathcal{N}}^{-1}(\mathcal{M}_{\mathcal{N}})$ is \mathcal{NCS} in (\mathcal{X},τ) . Which implies $f_{\mathcal{N}}$ is \mathcal{N} – continuous. Since $f_{\mathcal{N}}$ is $\mathcal{N}g^{\#} - \mathcal{HOM}$, $f_{\mathcal{N}}^{-1}$ is $\mathcal{N}g^{\#}$ – continuous. Let $\mathcal{P}_{\mathcal{N}}$ be a \mathcal{NCS} in (\mathcal{X},τ) . By hypothesis, $(f_{\mathcal{N}}^{-1})^{-1}(\mathcal{P}_{\mathcal{N}}) = f_{\mathcal{N}}(\mathcal{P}_{\mathcal{N}})$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{Y},ζ) . Since \mathcal{Y} is $T_{\mathcal{N}}g^{\#}$ – space, $f_{\mathcal{N}}(\mathcal{P}_{\mathcal{N}})$ is \mathcal{NCS} in (\mathcal{Y},ζ) . Which implies $f_{\mathcal{N}}^{-1}$ is \mathcal{N} – continuous. Hence $f_{\mathcal{N}}$ is \mathcal{N} – \mathcal{HOM} .

Neutrosophic Strongly g[#]- Homeomorphism

Definition 4.1 Let (\mathcal{X}, τ) and (\mathcal{Y}, ζ) be two Neutrosophic topological spaces. A bijection $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ is called strongly Neutrosophic $g^{\#}$ – homeomorphism (strongly $\mathcal{N}g^{\#} - \mathcal{HOM}$ for short) if $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}g^{\#}$ – irresolute functions.

Example 4.2 Let $\mathcal{X} = \{l, m\}$ and $\mathcal{Y} = \{p, q\}$. Consider the Neutrosophic sets

 $\mathcal{M}_{\mathcal{N}_{1}} = \{ \langle \mathbf{l}, (0.2, 0.3, 0.8) \rangle, \langle \mathbf{m}, (0.3, 0.3, 0.7) \rangle \}, \text{ Now } (\mathcal{X}, \tau) = \{ \mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}} \} \text{ and } (\mathcal{Y}, \zeta) = \{ \mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}} \} \text{ are } \\ \text{Neutrosophic topological spaces. Then } \tau = \{ \mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathbf{1}_{\mathcal{N}} \} \\ \text{and } \zeta = \{ \mathbf{0}_{\mathcal{N}}, \mathbf{1}_{\mathcal{N}} \} \text{ are } \mathcal{N}\mathcal{T}s \text{ on } \mathcal{X} \text{ and } \mathcal{Y} \text{ respectively.} \\ \text{Define a bijection } f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta) \text{ by } f_{\mathcal{N}}(\mathbf{l}) = p \text{ and } \\ f_{\mathcal{N}}(\mathbf{m}) = q. \quad \text{Here } \qquad \mathcal{N}g^{\#}\mathcal{C}\mathcal{S}(\mathcal{Y}) = \{ \mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}} \} = \\ \mathcal{N}g^{\#}\mathcal{C}\mathcal{S}(\mathcal{X}). \text{ Here } f_{\mathcal{N}} \text{ and } f_{\mathcal{N}}^{-1} \text{ both are } \mathcal{N}g^{\#} - \text{ irresolute.} \\ \text{Hence } f_{\mathcal{N}} \text{ is strongly } \mathcal{N}g^{\#} - \mathcal{H}\mathcal{O}\mathcal{M}. \end{cases}$

Theorem 4.3 Every strongly $\mathcal{N}g^{\#} - \mathcal{HOM}$ is $\mathcal{N}g^{\#} - \mathcal{HOM}$ but not conversely.

Proof. Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a strongly $\mathcal{N}g^{\#} - \mathcal{HOM}$, then $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}g^{\#}$ - irresolute. Since every $\mathcal{N}g^{\#}$ - irresolute function is $\mathcal{N}g^{\#}$ - continuous, $f_{\mathcal{N}}$ and $f_{\mathcal{N}}^{-1}$ both are $\mathcal{N}g^{\#}$ - continuous. Hence $f_{\mathcal{N}}$ is $\mathcal{N}g^{\#} - \mathcal{HOM}$.

Copyrights @Kalahari Journals

Example 4.4 Let $\mathcal{X} = \{l, m\}$ and $\mathcal{Y} = \{p, q\}$. Consider the Neutrosophic sets

$$\mathcal{M}_{\mathcal{N}_{1}} = \{ \langle l, (0.2, 0.2, 0.8) \rangle, \langle m, (0.2, 0.3, 0.8) \rangle \},\$$

 $\mathcal{M}_{\mathcal{N}_{2}} = \{ \langle \mathsf{p}, (0.9, 0.8, 0.1) \rangle, \langle \mathsf{q}, (0.8, 0.8, 0.1) \rangle \}.$

Now $(\mathcal{X}, \tau) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}$ and $(\mathcal{Y}, \zeta) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}\}$ are Neutrosophic topological spaces. Then $\tau = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathbf{1}_{\mathcal{N}}\}$ and $\zeta = \{\mathbf{0}_{\mathcal{N}}, \mathbf{1}_{\mathcal{N}}\}$ are $\mathcal{N}\mathcal{T}$ s on \mathcal{X} and \mathcal{Y} respectively. Define a bijection $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ by $f_{\mathcal{N}}(\mathbf{l}) = \mathbf{p}$ and $f_{\mathcal{N}}(\mathbf{m}) = \mathbf{q}$. Here, $\mathcal{N}\mathcal{CS}(\mathcal{X}) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathbf{1}_{\mathcal{N}}\} = \mathcal{N}g^{\#}\mathcal{CS}(\mathcal{Y}), \ \mathcal{N}\mathcal{CS}(\mathcal{Y}) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}^{c}, \mathbf{1}_{\mathcal{N}}\}, \ \mathcal{N}g^{\#}\mathcal{CS}(\mathcal{X}) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}^{c}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}.$ Here $f_{\mathcal{N}}$ is $\mathcal{N}g^{\#} - \mathcal{H}\mathcal{O}\mathcal{M}$. Now $\mathcal{M}_{\mathcal{N}_{2}}$ is a $\mathcal{N}g^{\#}CS$ in (\mathcal{X}, τ) but $(f_{\mathcal{N}}^{-1})^{-1}(\mathcal{M}_{\mathcal{N}_{2}})$ is not a $\mathcal{N}g^{\#}CS$ in (\mathcal{Y}, ζ) . Therefore $f_{\mathcal{N}}^{-1}$ is not $\mathcal{N}g^{\#} -$ irresolute and hence $f_{\mathcal{N}}$ is not strongly $\mathcal{N}g^{\#} - \mathcal{H}\mathcal{O}\mathcal{M}$.

Theorem 4.5 Composition of two strongly $\mathcal{N}g^{\#}$ – homeomorphism mappings is again a strongly $\mathcal{N}g^{\#}$ – homeomorphism.

Proof. Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ and $g_{\mathcal{N}}: (\mathcal{Y}, \zeta) \to (\mathcal{Z}, \eta)$ are strongly $\mathcal{N}g^{\#} - \mathcal{HOMs}$. Let $\mathcal{W}_{\mathcal{N}}$ be a $\mathcal{N}g^{\#}CS$ in (\mathcal{Z}, η) . Since $g_{\mathcal{N}}$ is strongly $\mathcal{N}g^{\#} - \mathcal{HOM}, g_{\mathcal{N}}^{-1}(\mathcal{W}_{\mathcal{N}})$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{Y}, ζ) . Since $f_{\mathcal{N}}$ is strongly $\mathcal{N}g^{\#} - \mathcal{HOM}, (g_{\mathcal{N}} \circ f_{\mathcal{N}})(\mathcal{W}_{\mathcal{N}}) = f_{\mathcal{N}}^{-1}(g_{\mathcal{N}}^{-1}(\mathcal{W}_{\mathcal{N}}))$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{X}, τ) . Therefore, $(g_{\mathcal{N}} \circ f_{\mathcal{N}})$ is $\mathcal{N}g^{\#} -$ irresolute. Now, Let $\mathcal{W}_{\mathcal{N}}$ be a $\mathcal{N}g^{\#}CS$ in (\mathcal{X}, τ) . Since $f_{\mathcal{N}}$ is strongly $\mathcal{N}g^{\#} - \mathcal{HOM},$ $f_{\mathcal{N}}(\mathcal{W}_{\mathcal{N}})$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{Y}, ζ) . Since $g_{\mathcal{N}}$ is strongly $\mathcal{N}g^{\#} - \mathcal{HOM},$ $f_{\mathcal{N}}(\mathcal{W}_{\mathcal{N}})$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{Y}, ζ) . Since $g_{\mathcal{N}}$ is strongly $\mathcal{N}g^{\#} - \mathcal{HOM},$ $(g_{\mathcal{N}} \circ f_{\mathcal{N}})(\mathcal{W}_{\mathcal{N}}) = g_{\mathcal{N}}(f_{\mathcal{N}}(\mathcal{W}_{\mathcal{N}}))$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{Z}, η) . Hence, $(g_{\mathcal{N}} \circ f_{\mathcal{N}})^{-1}$ is $\mathcal{N}g^{\#} -$ irresolute. Therefore, $(g_{\mathcal{N}} \circ f_{\mathcal{N}})$ is strongly $\mathcal{N}g^{\#} -$ homeomorphism.

Theorem 4.6 A mapping $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ is strongly $\mathcal{N}g^{\#} - \mathcal{HOM}$ then $\mathcal{N}g^{\#}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})) \subseteq f_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}))$ for each $\mathcal{NS} \ \mathcal{A}_{\mathcal{N}}$ in (\mathcal{Y}, ζ) .

Proof. Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a strongly $\mathcal{N}g^{\#} - \mathcal{HOM}$ and $\mathcal{A}_{\mathcal{N}}$ be a \mathcal{NS} in (\mathcal{Y}, ζ) . Then $\mathcal{N}cl(\mathcal{A}_{\mathcal{N}})$ is a \mathcal{NCS} in (\mathcal{X}, τ) . Since every \mathcal{NCS} is $\mathcal{N}g^{\#}CS, \mathcal{N}cl(\mathcal{A}_{\mathcal{N}})$ is a $\mathcal{N}g^{\#}CS$ in (\mathcal{Y}, ζ) . Now by hypothesis, $f_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}))$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{X}, τ) . Which implies that, $\mathcal{N}g^{\#}cl(f_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}))) =$ $f_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}))$. Here, $\mathcal{N}g^{\#}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})) \subseteq$ $\mathcal{N}g^{\#}cl(f_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}))) = f_{\mathcal{N}}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}))$. Hence, $\mathcal{N}g^{\#}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})) \subseteq f_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}))$ for each \mathcal{NS} $\mathcal{A}_{\mathcal{N}}$ in (\mathcal{Y}, ζ) .

Theorem 4.7 A mapping $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ is strongly $\mathcal{N}g^{\#} - \mathcal{HOM}$ then $\mathcal{N}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})) = f_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}))$ for each $\mathcal{NS} \ \mathcal{A}_{\mathcal{N}}$ in (\mathcal{Y}, ζ) .

Proof. Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a strongly $\mathcal{N}g^{\#} - \mathcal{HOM}$ then $f_{\mathcal{N}}$ is a $\mathcal{N}g^{\#}$ – irresolute mapping. And let $\mathcal{A}_{\mathcal{N}}$ be a Vol. 6 No. 3(December, 2021)

 \mathcal{NS} in (\mathcal{Y},ζ) . Then $\mathcal{N}cl(\mathcal{A}_{\mathcal{N}})$ is a \mathcal{NCS} in (\mathcal{Y},ζ) . Since every \mathcal{NCS} is $\mathcal{Ng}^{\#}CS, \mathcal{N}cl(\mathcal{A}_{\mathcal{N}})$ is a $\mathcal{Ng}^{\#}CS$ in (\mathcal{Y}, ζ) . Now by hypothesis, $f_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}))$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{X},τ) . Since $\mathbf{f}_{\mathcal{N}}^{-1}((\mathcal{A}_{\mathcal{N}})) \subseteq \mathbf{f}_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}})), \mathcal{N}cl(\mathbf{f}_{\mathcal{N}}^{-1}((\mathcal{A}_{\mathcal{N}}))) \subseteq \mathcal{N}cl(\mathbf{f}_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}))) = \mathbf{f}_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}})).$ Therefore, $\mathcal{N}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})) \subseteq f_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}})).$ Let $f_{\mathcal{N}}$ be a strongly $\mathcal{N}g^{\#}-\mathcal{HOM}$ then $f_{\mathcal{N}}^{-1}$ is a $\mathcal{N}g^{\#}-$ irresolute mapping. Let us assume that $f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})$ be a \mathcal{NS} in (\mathcal{X}, τ) , Which implies that, $\mathcal{N}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}}))$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{X}, τ) . Hence $\mathcal{N}g^{\#}cl(\mathcal{N}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})))$ is a $\mathcal{N}g^{\#}CS$ in (\mathcal{X},τ) . This implies $(\mathbf{f}_{\mathcal{N}}^{-1})^{-1}(\mathcal{N}\mathbf{g}^{\#}\mathrm{cl}(\mathcal{N}\mathrm{cl}(\mathbf{f}_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}}))))) =$ that, $f_{\mathcal{N}}(\mathcal{N}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})))$ is a $\mathcal{N}g^{\#}CS$ in (\mathcal{Y},ζ) . This proves, $\mathcal{A}_{\mathcal{N}} = (f_{\mathcal{N}}^{-1})^{-1} (f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})) \subseteq (f_{\mathcal{N}}^{-1})^{-1} (\mathcal{N}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}}))) =$ f $_{\mathcal{N}}(\mathcal{N}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}}))).$ Therefore, $\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}) \subseteq$ $\mathcal{N}cl(f_{\mathcal{N}}(\mathcal{N}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})))) = f_{\mathcal{N}}(\mathcal{N}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}}))),$ since $f_{\mathcal{N}}^{-1}$ is $\mathcal{N}g^{\#}$ - irresolute. Hence, $f_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}})) \subseteq$ $f_{\mathcal{N}}^{-1}(f_{\mathcal{N}}(\mathcal{N}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})))) = \mathcal{N}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})).$ That $f_{\mathcal{N}}^{-1}(\mathcal{N}\mathrm{cl}(\mathcal{A}_{\mathcal{N}})) \subseteq \mathcal{N}\mathrm{cl}(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})).$ Hence is. $\mathcal{N}cl(f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})) = f_{\mathcal{N}}^{-1}(\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}))$ for each $\mathcal{NS} \ \mathcal{A}_{\mathcal{N}}$ in $(\mathcal{Y},\zeta).$

References

[1] S. Anitha, K .Mohana, Florentin Samarandache, On NGSR Closed sets in Neutrosophic Topological Spaces, Neutrosophic Sets and Systems, **28**, (2019).

[2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, **20**, (1986), 87-96.

[3] A. Atkinswestly and S. Chandrasekar, Neutrosophic weakly G*-Closed Sets, Studies in Indian Place Names (UGC Care Journal), **40**, No.70, (2020).

[4] A.Atkinswestly and S. Chandrasekar, Neutrosophic $g^{\#}S$ closed sets in neutrosophic topological space, Malaya Journal Mathematik, **8**, No. 4, (2020), 1786-1791.

[5] C. L. Chang, Fuzzy topological spaces, J.Math.Anal.Appl., **24**,(1968), 182-190.

[6] R. Dhavaseelan and S. Jafari, Generalized Neutrosophic closed sets, New trends in Neutrosophic theory and applications **2**, (2018), 261-273.

[7] R.Dhavaseelan, S. Jafari and Md. Hanif Page,Neutrosophic Generalized α – contra-continuity,CREAT. MATH. INFORM. **20**,No. 2, (2011), 1-6.

[8] Dogan Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, **88**,No. 1, (1997), 81-89.

[9] Floretin Smarandache, Neutrosophic Set:- A Generalization of Intuitionistiic Fuzzy set, Journal of Defense Resourses Management,**1**, (2010), 107–116.

[10] Jaffer, I. Mohammed Ali and K. Ramesh. "Neutrosophic Generalized Pre-Regular Closed Sets." Neutrosophic Sets and Systems,**03**, No.1, (2019)..

[11] D. Jayanthi, On α Generalized closed sets in Neutrosophic topological spaces, International Conference on Recent Trends in Mathematics and Information Technology, (2018), 88-91.

Copyrights @Kalahari Journals

[12] N.Levine, Generalized closed set in topology, Rend.Circ.Mat Palermo, **19**, (1970), 89-96.

[13] Parimala M, Jeevitha R, Smarandache F, Jafari S and Udhayakumar R, Neutrosophic $\alpha\psi$ Homeomorphism in Neutrosophic Topological Spaces, Information, 9(187), (2018)1-10.

[14] S. Pious Missier, K. Alli and A. Subramanian., $g^{\#}p -$ closed sets in a topological spees, International Journal of Mathematical Archieve (IJMA)- 4, No.1, (2013),176-181.

[15] S. Pious Missier, R.L. Babisha Julit , On Neutrosophic generalized closed sets, Punjab University Journal of Mathematics (Submited)

[16] S. Pious Missier, R.L. Babisha Julit ,On Neurtosophic g[#] - Continuous Functions and Neurtosophic g[#] - Irresolute Functions,Abstract Proceedings of 24th FAI-ICDBSMD 2021 Vol. 6(i), pp.49(2021)

[17] S. Pious Missier, R.L. Babisha Julit , On Ng[#] – Interior and Ng[#] – Closure in Neutrosophic Topological Space, Conference Proceedings of NCAGT- 2021 , pp.122-133 (2021)

[18] S. Pious Missier, R.L. Babisha Julit ,On Ng[#] – Closed Mapping in Neutrosophic Topological Space,National Conference on "Contemporary Mathematics and Applications"2021.

[19] Pushpalatha A. and Nandhini T., Generalized closed sets via Neutrosophic topological Spaces, Malaya Journal of Matematik, 2019, 7(1), 50-54.

[20] Salama A. A. and Alblowi S. A., Neutrosophic set and Neutrosophic topological spaces, IOSR Jour. of Mathematics, 2012, 31-35.

[21] Salama A. A., Florentin Smarandache and Valeri Kroumov, Neutrosophic Closed set and Neutrosophic Continuous Function, Neutrosophic Sets and Systems, 2014, 4, 4–8.

[22] V.K.Shanthi, S.Chandrasekar, K.Safina Begam, Neutrosophic Generalized Semi Closed Sets In Neutrosophic Topological Spaces, International Journal of Research in Advent Technology, Vol.6, No.7, 1739-1743, (2018).

[23] Veera Kumar, M.K.R.S.,g[#] – closed sets in topological spaces, Mem. Fac. Sci. Kochi Univ. ser. A. Math 24(2003)

[24] Venkateswara Rao V. and Srinivasa Rao Y., Neutrosophic Pre-open sets and Pre-closed sets in Neutrosphic Topology, International Jour. ChemTech Research, 2017, 10(10), 449-458.

[25] Wadei Al-Omeri and Saeid Jafari, On Generalized Closed Sets and Generalized Pre-Closed in Neutrosophic Topological Spaces, Mathematics MDPI, (2018), **7**,01-12.

[26] Zadeh L. A., Fuzzy sets, Information and control, 1965, 8, 338-353.