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Abstract - Splicing system is a theoretical model of DNA 

computing which involves the process of cutting and 

pasting on DNA molecule with the presence of restriction 

enzymes and ligase, respectively. When no further control 

is expected, splicing systems with finite sets of axioms and 

rules generate only regular languages. Addition of 

restrictions to the splicing rules can increase the 

generative power of splicing languages to the recursively 

enumerable languages. Bounded-addition fuzzy splicing 

system is introduced in this study. Some fundamental 

properties of language formed by bounded-addition fuzzy 

splicing systems were established. The addition of fuzzy 

as a restriction on splicing operations was studied, and it 

was discovered that fuzzy splicing systems can increase 

the generative power of splicing systems with finite 

components that rely on bounded-addition operations 

and threshold language cut- points. 

 

Index Terms – Formal Language Theory, Fuzzy Splicing 

System, Restriction, Bounded-Addition. 

1. INTRODUCTION 

Every living organism has a unique deoxyribonucleic acid 

(DNA). The structure of DNA was firstly introduced in 1953 

by Watson and Crick [1] as a double-helical form. DNA 

molecules are constructed from monomers called nucleotides. 

Nucleotides have a very simple structure consisting of three 

components: sugar, phosphate, and base [2]. These structures 

of DNA were different from each other by the sequence of 

their bases namely Adenine, Guanine, Cytosine, and Thymine 

abbreviated as A, G, C and T respectively. These bases were 

tied together by hydrogen bonds using base-complementary 

rules, where A pairs with T, G pairs with C and vice versa. 

These rules of pairing can simply be written as a, g, c and t [1]. 

Splicing systems were first proposed by Head in 1987 

[3 ]  as a mathematical model of the recombinant behavior of 

double-stranded DNA (dsDNA) and the enzymes that cut and 

paste dsDNA. Restriction enzymes, which were found 

naturally in bacteria, can cut DNA fragments at certain 

sequences called restriction sites; ligases, on the other hand, 

can re-join DNA fragments with complementary ends [2]. This 

model consists of a finite alphabet V, a finite set of initial strigs 

over alphabet A, and a finite set of rules R that act upon the 

strings by iterated cutting and pasting, and generates new 

strings [1]. Splicing language is a language generated by the 

splicing system. It has been proven that all splicing languages 

with finite sets of axioms and rules are regular. However, not 

every regular language is a splicing language. Thus, to increase 

the generative power of the languages generated by splicing 

systems, several restrictions are imposed on the splicing 

systems [4]. 
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Since splicing systems with finite sets of axioms and 

rules generate only regular languages (see [5]), numerous 

restrictions on the use of rules have been studied, including 

probability, group, and weights [4], [6], [7]. All of these 

restrictions have one thing in common: they can increase the 

generative power of the language the generated up to 

recursively enumerable languages. This is significant in 

terms of DNA computing:   restricted splicing systems can 

be thought of as theoretical models for universally 

programmable DNA-based computers. 

Various problems in computer science and related fields 

prompted researchers to seek appropriate models for solving 

these issues. Fuzzy models, for example, have been widely 

used to develop accurate tools for natural and programming 

language processing. Fuzzy grammar eliminates ambiguity 

and leads to more effective language processing parsing and 

tagging algorithms. The study of fuzzy grammars and fuzzy 

automata can be found in [8]–[10]. The fact that fuzzy 

concepts in formal language and automata theories can be 

applied in DNA computing theory is interesting. The concept 

of fuzzy splicing systems with multiplication operations was 

first presented in [11]. It has been demonstrated that fuzzy 

splicing systems can increase generative power up to context-

sensitive languages when applying multiplication operations 

[11]. 

The purpose of this study is to analyze fuzzy splicing 

systems with bounded-addition operations, whose grammar 

and automata counterparts have been extensively studied 

in recent years. The concept of bounded-addition fuzzy 

splicing systems is introduced as follows: for each axiom, the 

truth values are associated with the closed interval [0,   1], 

and the true value of a string z is obtained by applying a 

bounded-addition fuzzy operation to the truth values of 

strings x and y [6], [12]. A threshold language is defined as a 

subset of the language generated based on some cut-points in 

[0, 1]. 

The following is a breakdown of the paper’s structure. 

Section 2 includes several important definitions and 

notations from formal language, splicing system and fuzzy 

set ideas. Section 3 proposes the concept of bounded-

addition fuzzy splicing systems and threshold languages, 

provides two examples of bounded-addition fuzzy splicing 

systems, and establishes some basic results on the generative 

power of bounded-addition fuzzy splicing systems. It has 

been proven that a finite bounded-addition fuzzy splicing 

system generates not only regular but also context-free and 

context- sensitive languages. Section 4 concluded the 

research with a discussion on the overall findings. 

2. PRELIMINARIES 

In this section, some prerequisites were covered by outlining 

the basic concepts and notations of the formal language and 

the splicing systems theories that will be used later. More 

details can be referred to [13]–[15]. 

The following general notations are used throughout the 

paper. The term  denotes an element’s membership in a 

set, whereas   denotes the absence of set membership. The 

strictness of the inclusion is specified by  , while   

stands for (proper) inclusion. The symbol   represents an 

empty set, while |X| represents the cardinality of a set X. 

The families of recursively enumerable, context-sensitive, 

context-free, linear, regular and finite languages were denoted 

by RE, CS, CF, LIN, REG and FIN respectively. For these 

language families, the next strict inclusions, named Chomsky 

hierarchy (see [14]), holds: 

 

              FIN REG LIN CF CS RE.  

 

Theorem 2.1 [16]: The relations in the following table hold, 

where at the intersection of the row marked with F1 with the 

column marked with F2 there appear either the family 

1 2EH( , )F F  or two families F3, F4 such that 

3 1 2 4F EH( , ) FF F  . 

 

Table 1 The family of languages generated by splicing systems 

1 2F \F  FIN REG LIN CF CS RE 

FIN REG RE RE RE RE RE 

REG REG RE RE RE RE RE 

LIN LIN, CF RE RE RE RE RE 

CF CF RE RE RE RE RE 

CS RE RE RE RE RE RE 

RE RE RE RE RE RE RE 

 

When proposing fuzzy sets, Zadeh’s (1965) concerns were 

explicitly centered on their potential contribution in the domains 

of pattern classification, processing, and communication of 

information, abstraction and summarization [8]. In the addition 

of fuzzy as a restriction, the fuzzy membership values from 

close intervals [0, 1] will be assigned to the axioms of the 

splicing system. Then, the truth values of every generated string 

will be calculated using fuzzy operation over their fuzzy 

membership values and to determine the classes of languages 

generated by the fuzzy splicing system [11]. 

3. MAIN RESULTS 

In this section, the concept of bounded-addition fuzzy splicing 

system was introduced by first assigning truth values (i.e., fuzzy 

membership values) to the axioms of splicing systems from the 

closed interval [0, 1]. Then, using a fuzzy bounded-addition 

operation over the truth values of strings x and y, the truth value 

of each created string 𝑥 is calculated. 
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Definition 3.1: A bounded-addition fuzzy splicing system is 

a 6-tuple ( , , , , , )V T A R     where V, T, R are 

defined as for a usual extended splicing systems, 
*: [0,1]V   is a fuzzy membership function, A

 is a 

subset of 
* [0,1]V   such that 

1

( ) 1
n

i

i

x


  

and   is a bounded-addition fuzzy operation on [0, 1] 

defined by 

.A B A B A B         

 

A fuzzy bounded-addition operation is defined next. 

Definition 3.2: For strings with fuzzy ( , ( )),x x  

( , ( )),y y *( , ( )) [0,1]z z V    and r R the fuzzy 

bounded-addition operation is defined as 

[( , ( )), ( , ( ))] ( , ( ))rx x y y z z z  a  

if and only if  ( , ) rx y za  and ( ) ( ) ( )z x y     is 

defined by  

 where ( ).x y x y x y x y ix             

Moreover, a fuzzy bounded-addition operation on 
* [0,1]A   

as well as an iterated fuzzy splicing operation was defined as 

in the following. 

Definition 3.3: Let ( , , , , , )V T A R     be a 

bounded-addition fuzzy splicing system. Then 

( ) {( , ( ) : ( , ) ( ) ( ) ( )rA z z x y z z x y        a  

for some ( , ( )), ( , ( ))x x y y A    and r R ,and the 

iterative splicing operation is defined as  

*

1

( ) ( )i

i

A A  



U  

where 

0 ( ) ,A A    

1 1( ) ( ) ( ( )) for 0.i i iA A A i           

 

 

Definition 3.4: The   language   generated    by    iterative 

bounded-addition fuzzy splicing system 

( , , , , , )V T A R     is defined as 

*( ) { | ( , ( )) ( )}.fL x T x x A       

Remark 3.1: Different splicing operations may result in the same 

string with different fuzzy memberships. Weak and strict 

threshold languages were considered in order to avoid this 

“ambiguity”. In strict language, all of a string’s fuzzy 

membership values must fulfil the threshold modes that will be 

defined. While in the weak language, satisfying just one string 

membership value was sufficient. 

Next, the properties of bounded-addition fuzzy splicing system 

with threshold points are defined. 

Definition 3.5: Let ( )fL  
 be   the   language   generated by 

a bounded-addition fuzzy extended splicing system 

( , , , , , ).V T A R     The thresholds (cut-points) are 

considered as subsegments and discrete subsets of [0, 1] as well 

as real numbers in [0, 1]. The strict and weak threshold languages 

with respect to thresholds [0,1]  and [0,1]  are 

defined as follows: 

* *( , , ) { | ( , ( )) ( ) and for all ( ), ( )  }fL z T x x A x x           

* *( ,*, ) { | ( , ( )) ( ) and for all ( ), ( ) * }fL z T x x A x x         

* *( , , ) { | ( , ( )) ( ) and for some ( ), ( )  }fL z T x x A x x           

* *( ,*, ) { | ( , ( )) ( ) and for some ( ), ( ) * }fL z T x x A x x           

where { , , , , , }        and * { , }   are called 

threshold modes. 

 

The family of threshold languages generated by bounded- 

addition fuzzy extended H systems of type (F1, F2) were denoted 

by 1 2EH( , )f F F
, where 1 2, {F F  FIN, REG, CF,

 }.LIN, CS, RE  

 

Lemma 3.1: For all families 1 2, {  F F  FIN, REG, CF,

 }.LIN, CS, RE  

 

1 2 1 2EH( , ) EH( , )F F f F F  
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Proof: Let ( , , , )V T A R   be extended splicing system 

generating the language ( ) EH( ,  F)L   FIN  where 

1 2, { }.F F  FIN, REG, CF, CS, RE  Let A = {x1, 

x2,…, xn}, n  1. A bounded-addition fuzzy splicing 

system is defined by ( , , , , , )V T A R     where 

the set of axioms is defined by  

{( , ( )) : ,1 }i i iA x x x A n     

where μ(xi)=1/n for all 1  n, then 

1

( ) 1
n

i

i

x


  

and   is a bounded-addition fuzzy operation on [0, 1] 

defined by 

 where ( ).A B A B A B A B ix             

The threshold language generated by  
is defined as 

( 0),fL     then it is clear that ( ) ( 0).fL L     

Hence, 1 2 1 2EH( , ) EH( , )F F f F F  for all families 

1 2, { }.F F  FIN, REG, CF, LIN, CS, RE              

 

The following examples demonstrate that with this 

restriction, the generative power of bounded-addition fuzzy 

splicing systems can be increased up to the context-sensitive 

languages. 

 

Example 3.1: Consider the bounded-addition fuzzy splicing 

system 

1

1 1
({ , , , },{ , , },{( , ), ( , )}, , , )

3 2
a b c d a b c cad dbc R     

where 

1 2 3 1{ , , } and # $ # ,R r r r r a d c a   

2 3# $ #  and # $ #r b c d b r a d d b   

When the first rule r1 is applied in a string cad, the 

string obtained is 

1

1 1 5
[( , ), ( , )] ( , ).

3 3 9
rcad cad caada  

By iterative splicing operation between the same string 

using the rule r1, the string 

2
( , )

3

n
n

n
ca d  

is obtained. 

By applying the rule r2 to the string dbc, the string 

obtained is 

2

1 1 3
[( , ), ( , )] ( , ).

2 2 4
rdbc dbc dbbca  

By iterative splicing operation between the same string using 

the rule r2, the string  

1
( ,1 )

2

m

m
db c   

is obtained. 

From the strings cand, n  1, and dbmc, m  1, by using the 

rule r3, the iterative splicing is 

3

2 1 2
( , ), ( ,1 ) ( ,1 ).

3 2 3 2

n n
n m n m

rn m n m
ca d db c ca b c a  

Thus,  

1

2
( ) {( ,1 ) | 1, 1}.

3 2

n
n m

f n m
L ca b c k m       

When bounded-addition fuzzy splicing systems with 

different thresholds and modes are considered, the threshold 

languages generated are 

 

1

2
1. ( 1 ) { | , 1}

3 2

n
n m

f n m
L ca b c m n      REG,

1

2
2. ( )

3
fL    FIN,

1

2
3. ( ) { }

3
fL cabc    FIN,

1

1
4. ( 1 ( ) ) { | 1}

3

n n n

fL ca b c n      CF - REG.  

 

As it can be seen, the last threshold language generated by the 

bounded-addition fuzzy splicing system was not regular. 

However, if the bounded-addition was replaced with min or 

max, the threshold languages were not more than regular. In this 

case, for the generated strings canbmc, 

 

1
, , 0,

3
( )

1
, , 0.

2

n m

m n

ca b c

m n






 
 


 

 

Therefore,  

1

1
( 1 ( ) ; 1)

3

n

fL n     FIN,

1

1
( ) { | , 1}

3

n m

fL ca b c n m     REG.  
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 Example 3.2: Consider the bounded-addition fuzzy splicing 

system 

2

1
({ , , , , , , },{ , , , , },{( , ),

3
a b c w x y z a b c w x xay  

1 2 3 4 5

1 1
( , ), ( , )},{ , , , , }, , )

5 7
ybz zcw r r r r r    

where

1 2 3 # $ # , # $ # , # $ #r xa y x a r yb z y b r zc w z c    

4 5# $ #  and # $ # .r a y y b r b z z c   

 

When the first rule r1 is applied in a string xay, by 

iterative splicing operation between the same string using 

the same rule, the string  

2
( ,1 ), 1

3

k
k

k
xa y k   

is obtained. 

 

When the second rule r2 is applied in a string ybz, by 

iterative splicing operation between the same string using 

the same rule, the string 

4
( ,1 ), 1

5

m
m

m
yb z m   

is obtained. 

 

When the second rule r3 is applied in a string zcw, by 

iterative splicing operation between the same string using 

the same rule, the string 

6
( ,1 ), 1

7

n
n

n
zc w n   

is obtained. 

 

The non-terminals y and z from these strings are eliminated 

by rule r4 and r5. 

4

2 4
( ,1 ), ( ,1 )

3 5

k m
k m

rk m
xa y yb z  a  

2 4
( ,1 )

3 5

k m
k m

k m
xa b z   

and 

 

 

 

 

5

2 4 6
( ,1 ), ( ,1 )

3 5 7

k m n
k m n

rk m n
xa b z zc w  a

2 4 6
( ,1 ).

3 5 7

k m n
k m n

k m n
xa b c w   

Then, the language generated by the bounded-addition fuzzy 

splicing system 2


 , 

2

2 4 6
( ) {( ,1 ) | , , 1}.

3 5 7

k m n
k m n

f k m n
L xa b c w k m n      

Further, the following threshold languages were considered: 

2

2 4 6
1. ( 1 ) { | , , 1}

3 5 7

k m n
k m n

f k m n
L xa b c w k m n       

REG,  

2

19
2. ( )

25
fL    FIN,

2

19
3. ( ) { }

25
fL xabcw    FIN,

2

16
4. ( 1 ( ) ) { | 1}

35

n n n n

fL xa b c w n      CS - CF.  

 

The examples above illustrate that the use of thresholds with 

bounded-addition fuzzy splicing system increased the 

generative power of splicing systems with finite components. 

Two simple but interesting facts of bounded-addition fuzzy 

splicing systems are mentioned as Corollary 3.1 and Corollary 

3.2 as stated in the following. 

 

Corollary 3.1: If the fuzzy membership of each axiom 

( )x A  in a bounded-addition fuzzy splicing system 

( , , , , , )V T A R     is nonzero, then the threshold 

language ( )fL     with [0,1]  is an empty set, i.e., 

( ) .fL      

 

Corollary 3.2: If the fuzzy membership of each axiom 

( )x A  in a bounded-addition fuzzy splicing system 

( , , , , , )V T A R     is not greater than 1, then every 

threshold language ( )fL     with [0,1]  is finite. 

 

From Theorem 2.1, Lemma 3.1 and Examples 3.1 and 3.2, the 

following two theorems were obtained.
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Theorem 3.1:  Let ( , , , , , )V T A R     be a 

bounded- addition fuzzy extended splicing system, where 

0 ( ) 1x  for all x A  and [0,1].  Then, 

1. ( )fL     is a finite language. 

2. ( )fL     is a regular language. 

3. ( )fL I   is a regular language where I is a 

subsegment of [0, 1]. 

 

Proof:  

Case 1: Let ( , , , , , )V T A R     be a bounded-

addition fuzzy extended splicing system where 

1 1 2 2{( , ( )), ( , ( )),..., ( , ( ))}n nA x x x x x x     

and ( ) ,  1 .i ix i n     Since 0 ( ) 1,ix   

1

1

1 1

( ) ( ), { ,..., }.
k k

ij ij ij n

j j

x x    


 

    

Then, there exist a positive integer m = k + 1 N such 

that 

1

1

( ) , { ,..., }
m

ij ij n

j

x    


   

where 1  j  m. 

 

For any string ( ),  i

fx A i m    that was obtained 

from some strings of 
1( )i

f A  
 using more than or 

equal to m splicing operations, ( )x   is produced. 

Thus, ( )fL     contains a finite number of strings. 

 

Case 2: Let ( ) ( ) ( ).f f fL L L           

Since ( )fL  
 is regular and ( )fL     is finite, 

then ( )fL     is regular. 

 

Case 3: If 1 2( , ),I    then ( )fL I  = 

( )fL    ( ).fL     Hence, according to Case 

1 and Case 2, ( )fL I   is regular.           

 

Theorem 3.2: Let ( , , , , , )V T A R     be a 

bounded-addition fuzzy extended splicing system and 

( * )fL  
 be a threshold language where 

{ },min,max  * { , , }     and [0,1].  Then, 

1. ( * )fL  
 is a regular language, 

2. If  is max, then ( )fL      and ( )fL     

( ),fL    

3. If  is min, then ( )fL     and ( )fL   

( ),fL    

4. If I is a subsegment of [0, 1], then ( )fL I   is a regular 

languages. 

 

Proof: 

Case 1: Let ( , , , , , )V T A R     be a bounded-addition 

fuzzy extended splicing system with 

1 1 2 2{( , ( )), ( , ( )),..., ( , ( ))}.n nA x x x x x x     

Consider max as a bounded-addition fuzzy operation and > as a 

threshold mode. Then, the set of 
* ( )f A 

 can be represented 

as 
* * *

1 2( ) ( ) ( )f f fA A A       where 

* *

1 1( ) {( , ( )) ( ) : ( ) },f fA x x A x         

and 
* *

2 1( ) {( , ( )) ( ) : ( ) },f fA x x A x         

Let 
*

1( ) , 1,2.f iA A i     Then, 1 2A A A     where 

1 { : ( ) },A x A x      and 

2 { : ( ) }.A x A x      

The splicing system 2( , , , )V T A R   is constructed where 

* *

2( ) ( )L A T    is regular. Moreover, it is shown that  

* *

2 2( ) ( )f fA A   . First, 
* *

2 2( ) ( )f fA A    since 

2A A  . On the other hand, 
* *

2 2( ) ( ).f fA A    Let 

*

2( ).fx A   Then, there is an axiom 1( , ( ))x x A   such 

that 

1 1 2 2 1 1(( , ( )), ( , ( ))) ( , ( )),x x x x z z  a

1 1 2 2 3 3(( , ( )), ( , ( ))) ( , ( )),z z z z z z  a  

M 

1 1(( , ( )), ( , ( ))) ( , ( )),k k k kz z z z x x    a  

where 2 2( , ( ))x x A   and 
*

1 1( , ( )) ( ).fz z A    Then, 

1 2 1{ ( ), ( )} ( ) ,max x x z      

M 

1 1 1{ ( ), ( )} ( ) .k kmax z z z        
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Consequently, 
*

2( , ( )) ( ).fx x A    Thus, 
*

2( )f A 

*

2( ).f A   It follows that the language ( )fL   

* *

2( )f A T    is regular. Hence, 
*

1( )f A  

* *

2( ) \ ( )f fA A  
 and the language ( )fL    

( ) \ ( )f fL L      is also regular. Similarly, if the 

bounded-addition fuzzy operation is min, it can be proven 

that ( )fL     and ( )fL     are regular. 

 

Case 2: Let 1 2{ , ,..., }.n> max     Based on Case 1, 

max as bounded-addition fuzzy operation was considered. 

Then, it produces an axiom such that 

1 2 1{ ( ), ( )} ( ) ,max x x z      

M 

1 1 1{ ( ), ( )} ( ) .k kmax z z z        

Thus, the language ( )fL     is regular and 

( )fL     is an empty set produced. The language 

( ) ( ) ( ).f f fL L L          Since, 

( )fL     is empty and ( )fL     is regular, then 

( )fL  
 is regular. Hence, ( ) ( ).f fL L      

 

Case 3: Let 1 2{ , ,..., }.n> min     Based on Case 1, 

min as bounded-addition fuzzy operation was considered. 

Then, it produces an axiom such that 

1 2 1{ ( ), ( )} ( ) ,min x x z      

M 

1 1 1{ ( ), ( )} ( ) .k kmin z z z        

Thus, the language ( )fL     is regular and 

( )fL     is an empty set produced. The language 

( ) ( ) ( ).f f fL L L          Since, 

( )fL     is empty and ( )fL     is regular, then 

( )fL  
 is regular. Hence, ( ) ( ).f fL L      

 

Case 4: Let 1( ) ( ) (f f fL I L L        

2 )  where 1 2( , ).I    From Case 1, 1( )fL     

and 2( )fL     are regular. Therefore, their 

intersections are also regular.              

From the theorems above, the following corollary was obtained. 

Corollary 3.3: Every fuzzy splicing system with the bounded-

addition operation, max or min, and the cut-points of any 

number in [0, 1] or any subinterval of [0, 1] generate a regular 

language. 

 

4. CONCLUSION 

The concept of bounded-addition fuzzy splicing systems has    

been proposed and its preliminary properties were established 

in this study. The truth values were associated from closed 

interval [0, 1] with each axiom, and the truth value of a string z 

generated from strings x and y are calculated by applying fuzzy 

bounded-addition operation over the truth value. It shows that an 

extension of splicing systems by introducing bounded-addition 

fuzzy splicing systems increases the generative power of 

splicing systems with finite components up to some context-

sensitive languages. Besides, some threshold languages with the 

selection of appropriate cut-points also can generate non-regular 

languages. 
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