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Abstract - Cyberattacks nowadays are prevalent, and 

cybercriminals do not choose their target, whether small 

or large. The most common form of an attack utilizes 

malware where the victim users execute this malware in 

their workstations. By executing this malware, 

cybercriminals gains access to these machines and gain an 

initial foothold. The result of these attacks causes 

organization financial losses. Thus, preventing and 

detecting this malware or at the same time protecting the 

users from this malware is imperative. This paper 

evaluates several machine learning algorithms in 

detecting malware and comparing its accuracy results 

with a 3rd party Antivirus product. 

 

Index Terms – Malware, Viruses, Machine Learning, 

Classification, Detection, Cybersecurity.  

INTRODUCTION 

A Data communication has progressed from a primary 

sender-receiver data transfer to a web of information 

transmission from one network system to the next. It is 

critical to protect data and information from hackers and 

enemies as knowledge gleaned from data and information 

becomes potentially more valuable than oil or gold. Aside 

from data and information, cybercriminals frequently target 

industrial control systems, supervisory control and data 

acquisition, and other IoT-enabled systems. According to 

Microsoft's defense report [1], sophisticated attacks 

increasingly focus on credential harvesting and ransomware. 

In the first half of 2020, the total number of attacks on IoT 

climbed by 35%. Furthermore, according to a ZDNet analysis 

based on F5 statistics [2], Brute Force or Credential Stuffing 

is the most common security issue, accounting for 41%, 

followed by Distributed Denial-of-Service (DDoS) at 32%. 

 On the other hand, ransomware is now being used to steal 

credentials in popular browsers like Google Chrome, Mozilla 

Firefox, and Microsoft Internet Explorer [3]. Ransomware has 

been improved to steal E-mail passwords in Mozilla Thunderbird 

and Microsoft Outlook, in addition to its web browser attack 

vector. Cybercriminals and enemies with high-privilege 

credentials to manage workstations and servers can disrupt 

manufacturing companies, power generation organizations, 

transportation controllers, and, worst of all, nuclear and military 

weapons. According to [4], a malware outbreak in Ukraine 

recently led to the shutting down of monitoring equipment for 

radiation levels at the Chernobyl Nuclear Power Plant. 

         According to [5], because of the convergence of 

information and operational technologies, cybercriminals and 

adversaries now have more attack avenues as a result of the 4th 

industrial revolution. Computer systems have an average life 

cycle of nine years. Machines and sensors from the Internet of 

Things or robotics, on the other hand, may endure 20 to 30 years, 

providing cybercriminals and adversaries more time to uncover 

weaknesses and attacks. According to [6], the number of 

cybercriminals and adversaries is on the rise around the world, 

making it more difficult for small businesses and organizations 

with limited budgets and manpower to defend themselves against 

cybersecurity threats. As a result, according to [7], cybersecurity 

is always depicted as an arms race between cybercriminals and 

security firms, with the digital environment serving as the 

battleground. According to [8], the top two reasons for security 

breaches are a lack of time to find vulnerabilities and attack 

vectors (31%) and a lack of competence or appropriate 

knowledge to remediate the vulnerabilities discovered (21%). As 

a result, most businesses and organizations are unaware of how 

cybercriminals and adversaries create cyber-attacks and how to 

protect themselves from being hacked.  

Cybercriminals or adversaries usually emerge from the 
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FIGURE 1  

Simple Enterprise Network Architecture

 

Internet in a company's or organization's network system 

environment, as depicted in Fig. 1, and attack vectors start to 

form as corporations and organizations open up or try to 

access the Internet. Assume that a corporation or organization 

does not have an Internet connection. In that circumstance, 

the attack routes that cybercriminals or adversaries may use 

to minimize local attacks, usually insider attacks, and the 

attack vector is considerably reduced. As a result, fraudsters and 

enemies must physically connect to the network. On the other 

hand, web, e-mail, and file transfer are the most common Internet 

attacks.  Before moving on to servers, these attacks normally 

target a workstation or client. Employees or users using these 

workstations are vulnerable to attack because human behaviors 

such as viewing dangerous websites, downloading and opening  
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Microsoft Vulnerabilities By Year – Redrawn from [9] 
FIGURE 3  

Microsoft Vulnerability Types Breakdown from 1999 to 2019 – Redrawn 

from [9] 
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malicious files from the Web, E-mail, or file transfer storage 

provide more  opportunities for cybercriminals or 

adversaries.  Apart from harmful files, client users on 

workstations install more applications and drivers than 

servers, providing a risk if such applications have 

vulnerabilities or exploits that cybercriminals or adversaries 

might use the Internet. 

The majority of these attacks take advantage of code 

execution flaws in Microsoft's Windows operating system. 

Malware takes advantage of these code execution flaws to 

attack workstations and servers successfully. The top 

vulnerability is code execution over the last 20 years, 

according to data from [9]. This vulnerability is twice as 

much as the second most common one, which is Overflow. 

Figure 2 depicts the annual number of Microsoft 

vulnerabilities, whereas Figure 3 depicts the vulnerability 

types over the last 20 years. These flaws have been 

weaponized, and malicious software or malware has been 

packaged to exploit them. 

Machine learning strategies are evaluated in this 

paper to detect malware binaries and executables. The 

machine learning-based detector's results are then compared 

against those of a third-party antivirus provider.  

 

RELATED LITERATURE 

According to existing research, detection and mitigation 

approaches range from manual setups to the use of algorithms 

to the creation of traffic visualization. Machine learning is 

commonly used in assessing Windows event viewers in 

studies building algorithms for detecting dangerous software 

and behavior. [10], which has installed a Sysmon executable 

in a host to gather logs and implement the Random Forest 

machine-learning algorithm to detect credential dumping, 

service creation, scheduled task creation, process injection, 

and Regsvr32 attacks, is an example of a work that uses 

machine learning to detect malicious payloads and activities. 

The study's findings reveal that the threshold is linked to the 

rate of false positives. This outcome indicates that if a system 

identifies 100% true positives, the rate of false-positive 

detection increases. Another paper [11] employs machine 

learning to detect masquerading or impersonation attempts 

by monitoring user system behavior patterns. In terms of 

accuracy in detecting, [10] and [11] in Table I shows that 

false-positive increases as true positive increases. 

In contrast, [12] used Windows Event data to test 

Support Vector Machine, Isolation Forest, and Local Outlier 

Factor machine learning algorithms for detecting Golden 

Ticket and Privilege Escalation attacks. Compared to the 

other two methods in Table I, the Support Vector Machine 

approach produces high precision and accuracy outcomes. 

The Markov machine learning model was then utilized to 

detect unusual activity in Windows Active Directory logins 

by [13]. Table I reveals that the accuracy that can be achieved 

is just 66 percent. [13] concluded that Active Directory log 

restrictions are to blame for the poor performance in detecting 

anomalies. 

Other works that employ simple methods such as 

keyword or string filtering and event taggings in Windows event 

viewer instead of machine learning-based algorithms to detect 

anomalous behaviors or related attacks include [14], which 

detects credential dumping and Kerberos authentication attacks 

using Powershell and honeypots. [15] suggested an algorithm for 

detecting Golden ticket or privilege escalation threats by filtering 

event IDs. While [16] employs a pattern mining technique to 

detect malicious logins or lateral movement attacks, [17] 

developed a graphic user interface that depicts pattern behavior 

to detect malicious logins via visual correlation and login events. 

Future suggestions of these papers may employ a machine 

learning-based method, as suggested by the authors. 

Nair and Sridaran's work [18] implements best practice 

account and password creation to mitigate attacks such as 

Dictionary, Brute force, Rainbow Table, Phishing, Social 

Engineering, Malware, Offline Cracking, Shoulder Surfing, 

Spidering, and Guessing attacks, is a related work that does not 

use detection methods but manually configures the environment 

to enforce protection in the Windows environment. [19] 

developed the Privileged Account Access Control System 

application model to protect against a dictionary, brute force, 

rainbow tables, pass-the-hash, man-in-the-middle, and sniffing 

attacks. While [20] employed Group Policy Objects (GPO) and 

Active Directory Services to protect against browser-related 

vulnerabilities like JavaScript and Plugin-based attacks, as well 

as Phishing. [21] on the other hand, it implements a principle of 

least privilege to reduce privilege escalation attacks. While [22] 

implements a centralized single sign-on (SSO) to protect 

application credentials. Aside from these manual adjustments to 

secure the Windows environment, [23] has developed a system 

to identify machine clients at danger of lateral movement attacks 

rather than detecting or mitigating Windows-related attacks. 

The available efforts on defending and securing the 

Windows environment from attacks still use a mix of static and 

manual settings. However, when compared to full-fledged 

machine learning-based algorithm detection methods, it is still 

low. Because a resilient or static setup gives a 100 percent result 

in known or signature-based threats, many security researchers 

still believe machine learning-based detection produces incorrect 

findings, according to this literature review. Machine learning-

based detection methods, on the other hand, have shown to be 

capable of detecting unknown or zero-day attacks. 

 

I. Lacking in the Approaches 

The related literature cited above lacks the skills to identify 

unknown or zero-day threats, which this proposal aims to 

address. The research [18]–[23] use manual settings to mitigate 

or stop specific attacks, but they cannot protect against unknown 

or zero-day attacks. Similar works in defending the Windows 

environment that employs algorithms but does not use machine 

learning-based algorithms, on the other hand, have similar 

capabilities in fighting  
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Windows attacks. In comparison to the research stated above, 

the sole notable advantage is that it is automated. These 

studies are as follows: [14], which uses the Splunk Processing 

Language, only detects attacks that have been programmed 

into it for querying or filtering, [15], which proposes using 

machine learning in future research to reduce false positive 

detection, [16], which uses pattern mining with low accuracy 

results, and [17], which uses a graphic user interface, 

proposes exploring algorithm designs for future research. 

On the other hand, related research that focuses on 

machine learning detection approaches, such as [10], 

extensively relies on Sysmon logs as input parameters, which 

are supplied to a central logging aggregator or Security 

Incident and Event Manager (SIEM). Because the Sysmon 

installed on the server or client must be given to the SIEM, 

this method adds latency to the results. The study of [11], on 

the other hand, uses file details as input parameters. This 

feature or input parameter is insufficient to detect whether a 

file is malicious or benign. [11] found that at a False Positive 

Rate (FPR) of 0.2 percent, the accuracy is 54 percent. [12] 

did an excellent job of evaluating three machine learning 

methods. On the other hand, the input parameters are 

individual event ID logs, which are far too simple for a 

machine learning-based method. This strategy does not work 

for unidentifiable attacks using event IDs alone, but it may be 

used to train the machine learning-based algorithm. The study 

in [13] used Active Directory logs as input parameters, which 

they recognized were insufficient to detect malicious 

activities or Windows attacks in their conclusions. 

Aside from the insufficient approaches, most studies 

employed Windows event viewer logs as input features and 

parameters. 

 

II. Summary 

Protecting the Windows environment using human 

configuration, non-machine learning-based algorithms, and 

machine learning-based algorithms are the three categories of 

related research. Manual setup and non-machine learning-

based techniques are still preferred by security experts 

because they provide 100 percent accuracy in detecting 

known and signature-based attacks. Machine learning-based 

algorithms are still in the experimental stage. The majority of 

businesses and organizations that use machine learning-based 

detection methods do so in addition to classical or signature-

based detection approaches. Because the authors analyzed 

distinct scenarios and employed different input factors, the 

data generated from these researches primarily differ. The 

majority of the studies, however, employed the Windows 

event viewer logs as input parameters. Except for [12] 

Support Machine Vector, no specific machine learning-based 

technique has been suggested. The challenge remains in 

determining the best input feature parameters and machine 

learning method for high accuracy and a low false-positive rate. 

 

MACHINE LEARNING-BASED DETECTORS 

I. Logistic Regression 

A machine learning-based detector based on Logistic Regression 

is used to distinguish between malicious and benign samples. The 

Logistic Regression model produces a boundary that may be used 

to determine if a sample is malicious or benign. The loss function 

of logistic regression is depicted by the negative log-likelihood. 
ℓ({𝑝𝑖}, {𝑦𝑖}) = ∑ ((1 − 𝑦𝑖) log(1 − 𝑝𝑖) + 𝑦𝑖 log 𝑝𝑖  𝑖      (1) 

where {𝑦𝑖} represents for truth labels and {𝑝𝑖} stands for 

probability predictions. As a product of each likelihood, the 

likelihood of all forecasts is indicated below. 

ℒ({𝑝𝑖}, {𝑦𝑖}) =  ∏ 1 − 𝑝𝑖𝑦𝑖=0 . ∏ 𝑝𝑖𝑦𝑖=1     (2)                             

The goal of logistic regression is to find the best parameters that 

create probabilities that maximize or optimize the likelihood. A 

hyperplane is used to identify the binaries or executables in 

Logistic Regression. The amount of fed or configured features to 

the logistic regression algorithm, which geometrically 

differentiates malicious from benign samples, determines the 

hyperplane. Logistic regression classifies a sample or an unknown 

binary or executable on the malicious or benign side of the border 

when it is input into the detector. 

Sklearn.Linear_model.LogisticRegression is used in building 

Logistic Regression machine learning detector [24]. 

II. Random Forest 

A machine learning-based Random Forest detector is used to 

distinguish between malicious and benign samples. The Random 

Forest approach depends largely on decision trees, with each 

decision tree casting a vote to determine whether the sample is 

malicious or benign. The Random Forest algorithm follows the 

following steps: 

a) A random subset of N samples (trained individual trees) 

from the training dataset is chosen. 

b) Random X features are chosen from the available Y 

features on each split point, and the optimal split point is 

chosen among these X features, where X \le Y. 

c) Do step 2 until each tree is trained. 

d) Do steps 1, 2, and 3 until all trees in the forest are trained. 

 

The number of decision tree votes divided by the total number 

of decision trees determines the likelihood that a binary or 

executable, whether malicious or benign, is to be identified. 

Sklearn.Ensemble.RandomForestCLassifier is used in 

building the Random Forest machine learning detector [25].
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III. Support Vector Machines 

A machine learning-based Support Vector Machine (SVM) 

detector is used to distinguish between malicious and benign 

samples. The loss function differs between SVM and logistic 

regression in that it forms a hyperplane. Hinge loss is 

implemented in SVM, which penalizes samples that are solely 

on the wrong side. Logistic regression, on the other hand, uses 

a log-likelihood function to penalize all samples according to 

the probability error estimate. The support vector machine's 

loss function is shown below. 

β +  𝐶 ∑ 𝜉𝑖
𝑁
𝑖 = 1                         (3)       

where the margin is β, the hyperparameter that is relative to 

the contribution of the two terms is 𝐶, and the distance of the 

margin to the 𝑖th support vector is 𝜉𝑖. Sklearn.Svm.SVC is 

used in building the Support Vector Machine detector [26]. 

IV. Neural Networks 

As indicated in Fig. 4, another algorithm is Neural Networks 

(NN) or Artificial Neural Networks (ANN). It is a complex 

network of a critical computational element called a 

perceptron, which are basic simulations of neurons in the 

brain. Its architecture and computing are based on a network 

of completely parallel networks of different computational 

parts that are systematized in connection to one another. In 

this type of algorithm, the learning process is visible in some 

way. It can also deliver accurate and dependable expected 

outcomes. 

The input layer on the left side consists of a set of new 

neurons 𝑥𝑖 which represent the input  

{𝑥𝑖|𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛}.                  (4)       

The middle, which is the hidden layer, transforms previous 

layers' values using linear weights 𝑤𝑖  summation 

 {𝑤𝑖𝑥𝑖 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3+. . . +𝑤𝑛𝑥𝑛} (5)       

and nonlinear activation function such as rectified linear unit 

𝑅(𝑧) (ReLU) with 𝑧 as input is applied. 

      

 𝑅(𝑧) = max(0, 𝑧) 

 

(6)       

This activation function or ReLU applies a nonlinear 

transformation on the weighted sum to optimize the parameters 

with backpropagation, resulting in a linear transformation of the 

neuron's input data. The output layer, which is on the right side, 

then obtains the values from the final hidden layer, transforms 

them, and outputs them. 

Sklearn.Neural_network.MLPClassifier is used in building a 

Neural Network detector [27]. 

 

 
FIGURE 4  

The Architecture of the Neural Network 

 

TRAINING AND TESTING 

I. Sample Dataset 

The benign samples have been copied from Windows 2016 Server 

System32 folder with the following commands: 

• cd c:\Windows\System32 

• copy *.dll c:\tmp 

• copy *.exe c:\tmp  

 Samples were transferred to the machine learning-based detector 

host machine. 

On the other hand, malware samples h-ave been collected from 

https://www.virustotal.com/ and 

https://github.com/vxunderground. 

Study Detection Algorithm False 

Positive Rate 

(%) 

Recall (%) Precision 

(%) 

Accuracy (%) 

[10] Sensitivity Plot to Detect New 

Service Creation  

Random Forest 1.5 - - Able to detect 

(Binary 

Validation) 

[11] Masqueraders Detection 

Accuracy 

Gaussian Mixture Model 1 - - 68 

[12] Results for each Algorithm  One-Class SVM - 100 100 100 

LOF - 5 7 74 

Isolation Forest - 43 90 50 

[13] Performance Evaluation  Trendmicro and Markov 

Model 

- 66.60 99.07 66.34 

TABLE I 

Studies Using Machine Learning Algorithm for Detection 
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Table II shows the samples used in training and testing the 

machine learning-based detector, and Table III shows a 

summary of the sample dataset. The benign samples are all the 

available samples contained in the Windows system32 folder. 

For matching or balancing with the number of benign samples, 

the same number of malicious samples were gathered. The 14 

customized malware samples are specially created to 

demonstrate the ability of the machine learning-based detectors 

to detect the binaries and executables, such as zero-day attacks, 

and compared its detecting efficiency with a 3rd party antivirus 

vendor. 

II. Evaluation Criteria 

 Each detector's results were evaluated, and the input 

parameters and settings were fine-tuned to obtain optimum  

 
TABLE II  

Sample Dataset 
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No-Alias 35 Delf 8 IRCBot 8 

Asper 1 Donbot 1 Koutodoor 1 

Banito 1 DsBot 19 LolBot 3 

Beastdoor 1 Dusta 1 MeSub 1 

Bifrose 106 FirstInj 5 Netbus 1 

BlackHole 54 Floder 1 Nucleroot 1 

Bredolab 26 FlyAgent 1 Papras 10 

Ciadoor 2 Gbot 32 PcClient 2 

Cinkel 1 Gnutler 1 Poison 31 

Clemag 7 Httpbot 1 Portless 1 

Curioso 1 Hupigon 50 Prorat 10 

DDOS 1 Inject 2 VXunderground 61 

For 

Testing 

Customize Win32 - 14  

Benign DLL Win32 - 405 

Benign Executable Win32 - 96 

 
TABLE III  

Sample Dataset Summary 

Category Quantity 

Malware 501 

Benign 501 

accuracy results in identifying samples, whether malicious or 

benign. The Accuracy formula is shown below, where TP 

stands for True Positive, TN as True Negative, FP as False 

Positive, and FN as False Negative. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇P + 𝑇N

𝑇P + 𝑇N + 𝐹P + 𝐹N
                                            (7) 

 

Testing Scenario 1: Evaluate individual customized malware 

samples against the Machine Learning-based Detectors. 

Testing Scenario 2: Perform train-test data slicing on samples 

as shown in Table IV. The process in Table IV shows that samples 

are divided into four, and four experiments are performed. In 

experiment 1, fold 4 was used for testing. In experiment 2, fold 3 

was used in testing. In experiment 3, fold 2 was used in testing, 

and in experiment 4, fold 1 was used. 

Two separate tests have been performed. The first one is the 

evaluation of the machine learning-based detector to detect the 14 

customized malware samples. In this scenario, the machine 

learning-based detector was trained and tested twice. The first 

testing included all the available benign and malware samples, 

excluding the 14 customized malware samples. The second 

testing including all benign and malware samples, and this 

includes the 14 customized malware samples. The only testing 

samples in this first evaluation were the 14 customized malware 

samples. On the second evaluation, data slicing was applied for 

training and testing. The benign and malicious samples are sliced 

or divided for training and testing in the following:  

• Test 1 – 50% training and 50% testing 

• Test 2 – 66.66% training and 33.33% testing 

• Test 3 – 75% training and 25% testing 

• Test 4 – 80% training and 20% testing 
 

TABLE IV  

Train-test Data Slicing 

 Fold 1 (1-

250 

samples) 

Fold 2 

(251-500 

samples) 

Fold 3 

(501-750 

samples) 

Fold 4 

(751- 1000 

samples) 

Experiment 1 Training Training Training Testing 

Experiment 2 Training Training Testing Training 

Experiment 3 Training Testing Training Training 

Experiment 4 Testing Training Training Training 

 

III. Evaluation using 14 Customized Malware Samples for 

Testing 

In Table V, individual malware samples were evaluated. A  value 

of 1 means that the detector could identify that the sample was 

malware, while 0 means that it could not identify the sample. For 

Logistic Regression, Random Forest, Support Vector Machine, 

Neural Network, and VirusTotal, a threshold of 50% accuracy 

were if the samples are run in this system, and it shows 50% or 

greater, then the value would be 1, or it can identify the malicious 

samples. For Avira and Webroot, the samples were just scanned 

using these installed antiviruses. It can be observed in Table V 

that the machine learning-based detectors that do not include the 

14 customized samples in training performed poorly. The same 

results were observed in VirusTotal, Avira, and Webroot. This 
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TABLE V  

Detection of Malware Samples Comparison 
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reverse.hta 1 1 1 1 1 1 1 1 0 0 0 

DLSU.doc 1 1 1 1 1 1 1 1 1 1 0 

reverse.bat 1 1 1 1 1 1 0 1 0 1 0 

reverse.exe 1 1 1 1 1 1 1 1 1 1 1 

powershell.ps1 1 1 1 1 1 1 0 1 0 0 0 

putty.exe 1 1 1 1 1 1 1 1 1 1 0 

windows-privesc-check2.exe 1 1 1 1 1 1 1 1 0 0 0 

juicy-potato.exe 0 1 0 1 0 0 0 1 1 1 1 

shell.exe 1 1 1 1 1 1 1 1 1 1 0 

mimikatz.exe 0 1 1 1 0 0 0 1 1 1 1 

accesschk64.exe 0 1 0 1 0 0 0 1 0 0 0 

driverquery.exe 0 1 0 1 0 0 0 1 0 0 0 

sigcheck.exe 0 1 0 1 0 0 0 1 0 0 0 

PsExec64.exe 0 1 0 1 0 0 0 1 0 0 0 

 

result means that the installed antivirus was not able to 

identify the malware samples. When the 14 customized 

samples are included in training with the machine learning-

based detector, values show that the machine learning-based 

detector has been able to identify all malware samples 

correctly. 

IV. Evaluation with Data Slicing 

In this evaluation, the available samples have been divided 

were as shown in Table VI. 50-50 means 50% of the samples 

were used for training, and the remaining 50% is for testing. 

67-33 means 67% of the samples were used for training, and 

the remaining 33% is for testing. 75-25 means 75% of the 

samples were used for training, and the remaining 25% is for 

testing. 80-20 means 80% of the samples were used for 

training, and the remaining 20% is for testing. For the two 

antivirus vendors, Webroot and Avira, the samples and 

sample slicing used in the machine were transferred to the 

Windows victim machine. The folder where the samples are 

stored was scanned using the installed antivirus to obtain the 

antivirus' accuracy.   

 It can be observed in the mean values that whether the 

sample for testing is using 50%, 33%, 25%, or 20% of the 

samples, does impact its accuracy value. Fig. 5 shows that the 

machine learning-based detectors have outperformed both 

Webroot and Avira as the mean accuracy values for Webroot 

and Avira are around 91.64% and 89.34%, respectively. 

While the mean values for Logistic Regression, Random 

Forest, Support Vector Machine, and Neural Network are around 

99.13%, 99.20%, 95.20%, and 97.29% respectively. This result 

means that the Random Forest followed by Logistic Regression 

has performed better than Support Vector Machine, Neural 

Network, Webroot, and Avira in this data slicing evaluation to 

identify whether the samples are malicious or benign.  

V. Performance Analysis 

Section III utilized the 14 customized samples for testing, while 

section IV performed a data slicing, and samples are divided by 

50%, 33%, 25%, and 20% for testing. Results show that Random 

Forest and Logistic Regression outperform the other machine 

learning algorithms. Avira and Webroot were also evaluated if 

these antivirus vendors can detect the malicious samples but have 

performed poorly compared to the machine learning-based 

detectors, especially when the 14 customized samples are added 

in training. Section IV shows that slicing the samples to varying 

quantities such as 50%, 33%, 25%, and 20% for testing does affect 

the mean accuracy. It is observed that all machine learning-based 

detectors have outperformed Avira and Webroot in this scenario. 

On the other hand, the best performing machine learning 

algorithm on this is the Random Forest at 99.20%, followed by 

Logistic Regression at 99.13%. 
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TABLE VI  

Results using Data Slicing 

 

 

 

 

Slicing  Logistic Regression Random Forest Support Vector Machine Neural Network Webroot Avira 

50-50 

Test 1 99.20% 99.20% 97.61% 96.61% 96.80% 93.60% 

Test 2 98.60% 98.80% 92.60% 97.20% 86.45% 85.06% 

Mean 98.90% 99.00% 95.10% 96.91% 91.63% 89.33% 

67-33 

Test 1 99.40% 100.00% 98.20% 97.31% 97.01% 94.61% 

Test 2 98.80% 99.10% 95.51% 97.31% 97.31% 94.31% 

Test 3 99.40% 99.40% 94.01% 97.60% 80.54% 79.04% 

Mean 99.20% 99.50% 95.91% 97.41% 91.62% 89.32% 

75-25 

Test 1 99.21% 99.60% 98.41% 96.43% 96.40% 97.20% 

Test 2 99.60% 99.20% 96.80% 98.80% 97.20% 90.00% 

Test 3 98.40% 98.40% 94.80% 96.40% 98.80% 96.40% 

Test 4 99.20% 99.20% 94.40% 97.20% 74.21% 73.81% 

Mean 99.10% 99.10% 96.10% 97.21% 91.65% 89.35% 

80-20 

Test 1 99.01% 99.50% 99.01% 97.03% 95.50% 96.50% 

Test 2 100.00% 100.00% 96.50% 98.50% 98.50% 88.50% 

Test 3 99.50% 99.00% 95.50% 98.50% 97.50% 98.50% 

Test 4 99.00% 98.00% 95.00% 96.00% 99.00% 96.00% 

Test 5 99.00% 99.50% 94.50% 98.00% 67.82% 67.33% 

Mean 99.30% 99.20% 96.10% 97.61% 91.66% 89.37% 

FIGURE 5 

 Evaluation with Data Slicing Results 
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COONCLUSION AND RECOMMENDATIONS 

In this paper, results show that the created machine learning-

based detector performs better in identifying or classifying the 

malicious samples than current antimalware products. This 

conclusion is reinforced with the results in Table VI and Fig. 5 

when Avira and Webroot were added to the evaluation. The 

outcomes show that the machine learning-based detector 

outperformed these antiviruses. 

Two testing scenarios were performed. The first 

scenario was the testing samples only used the 14 

customized samples, while the second scenario testing 

performed a data slicing. For the first scenario, the list of 

machine learning-based detectors evaluated, with testing 

samples included in the training, Random Forest and 

Logistic Regression, performed better in accuracy than 

other machine learning-based detectors. Implementing 

this machine learning-based detector makes it possible to 

detect the malware used in zero-day attacks or attacks 

explicitly improvised for such an organization or 

company without relying on a third-party vendor or 

product. 

For the second scenario, results of the first scenario 

were reinforced as all four machine learning-based 

detectors outperformed Avira and Webroot in identifying 

the samples, whether it is malicious or benign. This 

conclusion provides the feasibility of the proposal that by 

implementing machine learning-based detectors, 

organizations or companies do not need to wait for 

vendors or third-party malware detectors to release 

signatures or indicators to remediate this malware used in 

the attacks. Having the capability to block such attacks  

results in fewer organizations and companies being 

compromised and exploited by Cybercriminals.  

It is recommended to implement a machine learning-

based detector on top of the current antimalware 

products. A machine learning-based detector enables an 

organization to detect and block custom or specific 

attacks that traditional and enterprise antimalware 

vendors cannot detect and block. 
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