
Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2669

ISSN: 0974-5823 Vol. 6 No. 3 December, 2021

International Journal of Mechanical Engineering

Evaluation of Detecting Malicious Binaries and

Executables Using Machine Learning-Based

Detectors

John Martin M. Ladrido
De La Salle University, Philippines.

Lawrence Materum
De La Salle University, Philippines.

Abstract - Cyberattacks nowadays are prevalent, and

cybercriminals do not choose their target, whether small

or large. The most common form of an attack utilizes

malware where the victim users execute this malware in

their workstations. By executing this malware,

cybercriminals gains access to these machines and gain an

initial foothold. The result of these attacks causes

organization financial losses. Thus, preventing and

detecting this malware or at the same time protecting the

users from this malware is imperative. This paper

evaluates several machine learning algorithms in

detecting malware and comparing its accuracy results

with a 3rd party Antivirus product.

Index Terms – Malware, Viruses, Machine Learning,

Classification, Detection, Cybersecurity.

INTRODUCTION

A Data communication has progressed from a primary

sender-receiver data transfer to a web of information

transmission from one network system to the next. It is

critical to protect data and information from hackers and

enemies as knowledge gleaned from data and information

becomes potentially more valuable than oil or gold. Aside

from data and information, cybercriminals frequently target

industrial control systems, supervisory control and data

acquisition, and other IoT-enabled systems. According to

Microsoft's defense report [1], sophisticated attacks

increasingly focus on credential harvesting and ransomware.

In the first half of 2020, the total number of attacks on IoT

climbed by 35%. Furthermore, according to a ZDNet analysis

based on F5 statistics [2], Brute Force or Credential Stuffing

is the most common security issue, accounting for 41%,

followed by Distributed Denial-of-Service (DDoS) at 32%.

 On the other hand, ransomware is now being used to steal

credentials in popular browsers like Google Chrome, Mozilla

Firefox, and Microsoft Internet Explorer [3]. Ransomware has

been improved to steal E-mail passwords in Mozilla Thunderbird

and Microsoft Outlook, in addition to its web browser attack

vector. Cybercriminals and enemies with high-privilege

credentials to manage workstations and servers can disrupt

manufacturing companies, power generation organizations,

transportation controllers, and, worst of all, nuclear and military

weapons. According to [4], a malware outbreak in Ukraine

recently led to the shutting down of monitoring equipment for

radiation levels at the Chernobyl Nuclear Power Plant.

 According to [5], because of the convergence of

information and operational technologies, cybercriminals and

adversaries now have more attack avenues as a result of the 4th

industrial revolution. Computer systems have an average life

cycle of nine years. Machines and sensors from the Internet of

Things or robotics, on the other hand, may endure 20 to 30 years,

providing cybercriminals and adversaries more time to uncover

weaknesses and attacks. According to [6], the number of

cybercriminals and adversaries is on the rise around the world,

making it more difficult for small businesses and organizations

with limited budgets and manpower to defend themselves against

cybersecurity threats. As a result, according to [7], cybersecurity

is always depicted as an arms race between cybercriminals and

security firms, with the digital environment serving as the

battleground. According to [8], the top two reasons for security

breaches are a lack of time to find vulnerabilities and attack

vectors (31%) and a lack of competence or appropriate

knowledge to remediate the vulnerabilities discovered (21%). As

a result, most businesses and organizations are unaware of how

cybercriminals and adversaries create cyber-attacks and how to

protect themselves from being hacked.

Cybercriminals or adversaries usually emerge from the

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2670

FIGURE 1

Simple Enterprise Network Architecture

Internet in a company's or organization's network system

environment, as depicted in Fig. 1, and attack vectors start to

form as corporations and organizations open up or try to

access the Internet. Assume that a corporation or organization

does not have an Internet connection. In that circumstance,

the attack routes that cybercriminals or adversaries may use

to minimize local attacks, usually insider attacks, and the

attack vector is considerably reduced. As a result, fraudsters and

enemies must physically connect to the network. On the other

hand, web, e-mail, and file transfer are the most common Internet

attacks. Before moving on to servers, these attacks normally

target a workstation or client. Employees or users using these

workstations are vulnerable to attack because human behaviors

such as viewing dangerous websites, downloading and opening

30%

19%
15%

15%

7%

6%

5% 3% 0%

Execute Code

Overflow

Memory Corruption

Denail of Service

Gain Information

Gain Privilege

Bypass Something

Cross-site Scripting

Directory Traversal

Cross-site Request Forgery

SQL Injection

HTTP Response Splitting

File Inclusion

FIGURE 2

Microsoft Vulnerabilities By Year – Redrawn from [9]
FIGURE 3

Microsoft Vulnerability Types Breakdown from 1999 to 2019 – Redrawn

from [9]

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2671

malicious files from the Web, E-mail, or file transfer storage

provide more opportunities for cybercriminals or

adversaries. Apart from harmful files, client users on

workstations install more applications and drivers than

servers, providing a risk if such applications have

vulnerabilities or exploits that cybercriminals or adversaries

might use the Internet.

The majority of these attacks take advantage of code

execution flaws in Microsoft's Windows operating system.

Malware takes advantage of these code execution flaws to

attack workstations and servers successfully. The top

vulnerability is code execution over the last 20 years,

according to data from [9]. This vulnerability is twice as

much as the second most common one, which is Overflow.

Figure 2 depicts the annual number of Microsoft

vulnerabilities, whereas Figure 3 depicts the vulnerability

types over the last 20 years. These flaws have been

weaponized, and malicious software or malware has been

packaged to exploit them.

Machine learning strategies are evaluated in this

paper to detect malware binaries and executables. The

machine learning-based detector's results are then compared

against those of a third-party antivirus provider.

RELATED LITERATURE

According to existing research, detection and mitigation

approaches range from manual setups to the use of algorithms

to the creation of traffic visualization. Machine learning is

commonly used in assessing Windows event viewers in

studies building algorithms for detecting dangerous software

and behavior. [10], which has installed a Sysmon executable

in a host to gather logs and implement the Random Forest

machine-learning algorithm to detect credential dumping,

service creation, scheduled task creation, process injection,

and Regsvr32 attacks, is an example of a work that uses

machine learning to detect malicious payloads and activities.

The study's findings reveal that the threshold is linked to the

rate of false positives. This outcome indicates that if a system

identifies 100% true positives, the rate of false-positive

detection increases. Another paper [11] employs machine

learning to detect masquerading or impersonation attempts

by monitoring user system behavior patterns. In terms of

accuracy in detecting, [10] and [11] in Table I shows that

false-positive increases as true positive increases.

In contrast, [12] used Windows Event data to test

Support Vector Machine, Isolation Forest, and Local Outlier

Factor machine learning algorithms for detecting Golden

Ticket and Privilege Escalation attacks. Compared to the

other two methods in Table I, the Support Vector Machine

approach produces high precision and accuracy outcomes.

The Markov machine learning model was then utilized to

detect unusual activity in Windows Active Directory logins

by [13]. Table I reveals that the accuracy that can be achieved

is just 66 percent. [13] concluded that Active Directory log

restrictions are to blame for the poor performance in detecting

anomalies.

Other works that employ simple methods such as

keyword or string filtering and event taggings in Windows event

viewer instead of machine learning-based algorithms to detect

anomalous behaviors or related attacks include [14], which

detects credential dumping and Kerberos authentication attacks

using Powershell and honeypots. [15] suggested an algorithm for

detecting Golden ticket or privilege escalation threats by filtering

event IDs. While [16] employs a pattern mining technique to

detect malicious logins or lateral movement attacks, [17]

developed a graphic user interface that depicts pattern behavior

to detect malicious logins via visual correlation and login events.

Future suggestions of these papers may employ a machine

learning-based method, as suggested by the authors.

Nair and Sridaran's work [18] implements best practice

account and password creation to mitigate attacks such as

Dictionary, Brute force, Rainbow Table, Phishing, Social

Engineering, Malware, Offline Cracking, Shoulder Surfing,

Spidering, and Guessing attacks, is a related work that does not

use detection methods but manually configures the environment

to enforce protection in the Windows environment. [19]

developed the Privileged Account Access Control System

application model to protect against a dictionary, brute force,

rainbow tables, pass-the-hash, man-in-the-middle, and sniffing

attacks. While [20] employed Group Policy Objects (GPO) and

Active Directory Services to protect against browser-related

vulnerabilities like JavaScript and Plugin-based attacks, as well

as Phishing. [21] on the other hand, it implements a principle of

least privilege to reduce privilege escalation attacks. While [22]

implements a centralized single sign-on (SSO) to protect

application credentials. Aside from these manual adjustments to

secure the Windows environment, [23] has developed a system

to identify machine clients at danger of lateral movement attacks

rather than detecting or mitigating Windows-related attacks.

The available efforts on defending and securing the

Windows environment from attacks still use a mix of static and

manual settings. However, when compared to full-fledged

machine learning-based algorithm detection methods, it is still

low. Because a resilient or static setup gives a 100 percent result

in known or signature-based threats, many security researchers

still believe machine learning-based detection produces incorrect

findings, according to this literature review. Machine learning-

based detection methods, on the other hand, have shown to be

capable of detecting unknown or zero-day attacks.

I. Lacking in the Approaches

The related literature cited above lacks the skills to identify

unknown or zero-day threats, which this proposal aims to

address. The research [18]–[23] use manual settings to mitigate

or stop specific attacks, but they cannot protect against unknown

or zero-day attacks. Similar works in defending the Windows

environment that employs algorithms but does not use machine

learning-based algorithms, on the other hand, have similar

capabilities in fighting

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2672

Windows attacks. In comparison to the research stated above,

the sole notable advantage is that it is automated. These

studies are as follows: [14], which uses the Splunk Processing

Language, only detects attacks that have been programmed

into it for querying or filtering, [15], which proposes using

machine learning in future research to reduce false positive

detection, [16], which uses pattern mining with low accuracy

results, and [17], which uses a graphic user interface,

proposes exploring algorithm designs for future research.

On the other hand, related research that focuses on

machine learning detection approaches, such as [10],

extensively relies on Sysmon logs as input parameters, which

are supplied to a central logging aggregator or Security

Incident and Event Manager (SIEM). Because the Sysmon

installed on the server or client must be given to the SIEM,

this method adds latency to the results. The study of [11], on

the other hand, uses file details as input parameters. This

feature or input parameter is insufficient to detect whether a

file is malicious or benign. [11] found that at a False Positive

Rate (FPR) of 0.2 percent, the accuracy is 54 percent. [12]

did an excellent job of evaluating three machine learning

methods. On the other hand, the input parameters are

individual event ID logs, which are far too simple for a

machine learning-based method. This strategy does not work

for unidentifiable attacks using event IDs alone, but it may be

used to train the machine learning-based algorithm. The study

in [13] used Active Directory logs as input parameters, which

they recognized were insufficient to detect malicious

activities or Windows attacks in their conclusions.

Aside from the insufficient approaches, most studies

employed Windows event viewer logs as input features and

parameters.

II. Summary

Protecting the Windows environment using human

configuration, non-machine learning-based algorithms, and

machine learning-based algorithms are the three categories of

related research. Manual setup and non-machine learning-

based techniques are still preferred by security experts

because they provide 100 percent accuracy in detecting

known and signature-based attacks. Machine learning-based

algorithms are still in the experimental stage. The majority of

businesses and organizations that use machine learning-based

detection methods do so in addition to classical or signature-

based detection approaches. Because the authors analyzed

distinct scenarios and employed different input factors, the

data generated from these researches primarily differ. The

majority of the studies, however, employed the Windows

event viewer logs as input parameters. Except for [12]

Support Machine Vector, no specific machine learning-based

technique has been suggested. The challenge remains in

determining the best input feature parameters and machine

learning method for high accuracy and a low false-positive rate.

MACHINE LEARNING-BASED DETECTORS

I. Logistic Regression

A machine learning-based detector based on Logistic Regression

is used to distinguish between malicious and benign samples. The

Logistic Regression model produces a boundary that may be used

to determine if a sample is malicious or benign. The loss function

of logistic regression is depicted by the negative log-likelihood.
ℓ({𝑝𝑖}, {𝑦𝑖}) = ∑ ((1 − 𝑦𝑖) log(1 − 𝑝𝑖) + 𝑦𝑖 log 𝑝𝑖 𝑖 (1)

where {𝑦𝑖} represents for truth labels and {𝑝𝑖} stands for

probability predictions. As a product of each likelihood, the

likelihood of all forecasts is indicated below.

ℒ({𝑝𝑖}, {𝑦𝑖}) = ∏ 1 − 𝑝𝑖𝑦𝑖=0 . ∏ 𝑝𝑖𝑦𝑖=1 (2)

The goal of logistic regression is to find the best parameters that

create probabilities that maximize or optimize the likelihood. A

hyperplane is used to identify the binaries or executables in

Logistic Regression. The amount of fed or configured features to

the logistic regression algorithm, which geometrically

differentiates malicious from benign samples, determines the

hyperplane. Logistic regression classifies a sample or an unknown

binary or executable on the malicious or benign side of the border

when it is input into the detector.

Sklearn.Linear_model.LogisticRegression is used in building

Logistic Regression machine learning detector [24].

II. Random Forest

A machine learning-based Random Forest detector is used to

distinguish between malicious and benign samples. The Random

Forest approach depends largely on decision trees, with each

decision tree casting a vote to determine whether the sample is

malicious or benign. The Random Forest algorithm follows the

following steps:

a) A random subset of N samples (trained individual trees)

from the training dataset is chosen.

b) Random X features are chosen from the available Y

features on each split point, and the optimal split point is

chosen among these X features, where X \le Y.

c) Do step 2 until each tree is trained.

d) Do steps 1, 2, and 3 until all trees in the forest are trained.

The number of decision tree votes divided by the total number

of decision trees determines the likelihood that a binary or

executable, whether malicious or benign, is to be identified.

Sklearn.Ensemble.RandomForestCLassifier is used in

building the Random Forest machine learning detector [25].

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2673

III. Support Vector Machines

A machine learning-based Support Vector Machine (SVM)

detector is used to distinguish between malicious and benign

samples. The loss function differs between SVM and logistic

regression in that it forms a hyperplane. Hinge loss is

implemented in SVM, which penalizes samples that are solely

on the wrong side. Logistic regression, on the other hand, uses

a log-likelihood function to penalize all samples according to

the probability error estimate. The support vector machine's

loss function is shown below.

β + 𝐶 ∑ 𝜉𝑖
𝑁
𝑖 = 1 (3)

where the margin is β, the hyperparameter that is relative to

the contribution of the two terms is 𝐶, and the distance of the

margin to the 𝑖th support vector is 𝜉𝑖. Sklearn.Svm.SVC is

used in building the Support Vector Machine detector [26].

IV. Neural Networks

As indicated in Fig. 4, another algorithm is Neural Networks

(NN) or Artificial Neural Networks (ANN). It is a complex

network of a critical computational element called a

perceptron, which are basic simulations of neurons in the

brain. Its architecture and computing are based on a network

of completely parallel networks of different computational

parts that are systematized in connection to one another. In

this type of algorithm, the learning process is visible in some

way. It can also deliver accurate and dependable expected

outcomes.

The input layer on the left side consists of a set of new

neurons 𝑥𝑖 which represent the input

{𝑥𝑖|𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛}. (4)

The middle, which is the hidden layer, transforms previous

layers' values using linear weights 𝑤𝑖 summation

 {𝑤𝑖𝑥𝑖 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3+. . . +𝑤𝑛𝑥𝑛} (5)

and nonlinear activation function such as rectified linear unit

𝑅(𝑧) (ReLU) with 𝑧 as input is applied.

 𝑅(𝑧) = max(0, 𝑧)

(6)

This activation function or ReLU applies a nonlinear

transformation on the weighted sum to optimize the parameters

with backpropagation, resulting in a linear transformation of the

neuron's input data. The output layer, which is on the right side,

then obtains the values from the final hidden layer, transforms

them, and outputs them.

Sklearn.Neural_network.MLPClassifier is used in building a

Neural Network detector [27].

FIGURE 4

The Architecture of the Neural Network

TRAINING AND TESTING

I. Sample Dataset

The benign samples have been copied from Windows 2016 Server

System32 folder with the following commands:

• cd c:\Windows\System32

• copy *.dll c:\tmp

• copy *.exe c:\tmp

 Samples were transferred to the machine learning-based detector

host machine.

On the other hand, malware samples h-ave been collected from

https://www.virustotal.com/ and

https://github.com/vxunderground.

Study Detection Algorithm False

Positive Rate

(%)

Recall (%) Precision

(%)

Accuracy (%)

[10] Sensitivity Plot to Detect New

Service Creation

Random Forest 1.5 - - Able to detect

(Binary

Validation)

[11] Masqueraders Detection

Accuracy

Gaussian Mixture Model 1 - - 68

[12] Results for each Algorithm One-Class SVM - 100 100 100

LOF - 5 7 74

Isolation Forest - 43 90 50

[13] Performance Evaluation Trendmicro and Markov

Model

- 66.60 99.07 66.34

TABLE I

Studies Using Machine Learning Algorithm for Detection

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2674

Table II shows the samples used in training and testing the

machine learning-based detector, and Table III shows a

summary of the sample dataset. The benign samples are all the

available samples contained in the Windows system32 folder.

For matching or balancing with the number of benign samples,

the same number of malicious samples were gathered. The 14

customized malware samples are specially created to

demonstrate the ability of the machine learning-based detectors

to detect the binaries and executables, such as zero-day attacks,

and compared its detecting efficiency with a 3rd party antivirus

vendor.

II. Evaluation Criteria

 Each detector's results were evaluated, and the input

parameters and settings were fine-tuned to obtain optimum

TABLE II

Sample Dataset

C
at

eg
o

ry

T
y

p
e

P
la

tf
o

rm

A
li

as

Q
u

an
ti

ty

A
li

as

Q
u

an
ti

ty

A
li

as

Q
u

an
ti

ty

M
al

w
ar

e

B
ac

k
d

o
o

r

W
in

3
2

No-Alias 35 Delf 8 IRCBot 8

Asper 1 Donbot 1 Koutodoor 1

Banito 1 DsBot 19 LolBot 3

Beastdoor 1 Dusta 1 MeSub 1

Bifrose 106 FirstInj 5 Netbus 1

BlackHole 54 Floder 1 Nucleroot 1

Bredolab 26 FlyAgent 1 Papras 10

Ciadoor 2 Gbot 32 PcClient 2

Cinkel 1 Gnutler 1 Poison 31

Clemag 7 Httpbot 1 Portless 1

Curioso 1 Hupigon 50 Prorat 10

DDOS 1 Inject 2 VXunderground 61

For

Testing

Customize Win32 - 14

Benign DLL Win32 - 405

Benign Executable Win32 - 96

TABLE III

Sample Dataset Summary

Category Quantity

Malware 501

Benign 501

accuracy results in identifying samples, whether malicious or

benign. The Accuracy formula is shown below, where TP

stands for True Positive, TN as True Negative, FP as False

Positive, and FN as False Negative.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇P + 𝑇N

𝑇P + 𝑇N + 𝐹P + 𝐹N
 (7)

Testing Scenario 1: Evaluate individual customized malware

samples against the Machine Learning-based Detectors.

Testing Scenario 2: Perform train-test data slicing on samples

as shown in Table IV. The process in Table IV shows that samples

are divided into four, and four experiments are performed. In

experiment 1, fold 4 was used for testing. In experiment 2, fold 3

was used in testing. In experiment 3, fold 2 was used in testing,

and in experiment 4, fold 1 was used.

Two separate tests have been performed. The first one is the

evaluation of the machine learning-based detector to detect the 14

customized malware samples. In this scenario, the machine

learning-based detector was trained and tested twice. The first

testing included all the available benign and malware samples,

excluding the 14 customized malware samples. The second

testing including all benign and malware samples, and this

includes the 14 customized malware samples. The only testing

samples in this first evaluation were the 14 customized malware

samples. On the second evaluation, data slicing was applied for

training and testing. The benign and malicious samples are sliced

or divided for training and testing in the following:

• Test 1 – 50% training and 50% testing

• Test 2 – 66.66% training and 33.33% testing

• Test 3 – 75% training and 25% testing

• Test 4 – 80% training and 20% testing

TABLE IV

Train-test Data Slicing

 Fold 1 (1-

250

samples)

Fold 2

(251-500

samples)

Fold 3

(501-750

samples)

Fold 4

(751- 1000

samples)

Experiment 1 Training Training Training Testing

Experiment 2 Training Training Testing Training

Experiment 3 Training Testing Training Training

Experiment 4 Testing Training Training Training

III. Evaluation using 14 Customized Malware Samples for

Testing

In Table V, individual malware samples were evaluated. A value

of 1 means that the detector could identify that the sample was

malware, while 0 means that it could not identify the sample. For

Logistic Regression, Random Forest, Support Vector Machine,

Neural Network, and VirusTotal, a threshold of 50% accuracy

were if the samples are run in this system, and it shows 50% or

greater, then the value would be 1, or it can identify the malicious

samples. For Avira and Webroot, the samples were just scanned

using these installed antiviruses. It can be observed in Table V

that the machine learning-based detectors that do not include the

14 customized samples in training performed poorly. The same

results were observed in VirusTotal, Avira, and Webroot. This

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2675

TABLE V

Detection of Malware Samples Comparison

Samples

L
o
g

is
ti

c
re

g
re

ss
io

n
 -

w
it

h
o
u

t
tr

ai
n
in

g

L
o
g

is
ti

c
re

g
re

ss
io

n
 -

w
it

h
 t

ra
in

in
g

R
an

d
o

m
 F

o
re

st
 -

w
it

h
o
u

t
tr

ai
n
in

g

R
an

d
o

m
 F

o
re

st
 -

w
it

h
 t

ra
in

in
g

S
u

p
p
o

rt
 V

ec
to

r

M
ac

h
in

es
 -

 w
it

h
o
u
t

tr
ai

n
in

g

S
u

p
p
o

rt
 V

ec
to

r

M
ac

h
in

es
 -

 w
it

h

tr
ai

n
in

g

N
eu

ra
l

N
et

w
o

rk
 -

w
it

h
o
u

t
tr

ai
n
in

g

N
eu

ra
l

N
et

w
o

rk
 -

w
it

h
 t

ra
in

in
g

V
ir

u
sT

o
ta

l

A
v

ir
a

W
eb

ro
o
t

reverse.hta 1 1 1 1 1 1 1 1 0 0 0

DLSU.doc 1 1 1 1 1 1 1 1 1 1 0

reverse.bat 1 1 1 1 1 1 0 1 0 1 0

reverse.exe 1 1 1 1 1 1 1 1 1 1 1

powershell.ps1 1 1 1 1 1 1 0 1 0 0 0

putty.exe 1 1 1 1 1 1 1 1 1 1 0

windows-privesc-check2.exe 1 1 1 1 1 1 1 1 0 0 0

juicy-potato.exe 0 1 0 1 0 0 0 1 1 1 1

shell.exe 1 1 1 1 1 1 1 1 1 1 0

mimikatz.exe 0 1 1 1 0 0 0 1 1 1 1

accesschk64.exe 0 1 0 1 0 0 0 1 0 0 0

driverquery.exe 0 1 0 1 0 0 0 1 0 0 0

sigcheck.exe 0 1 0 1 0 0 0 1 0 0 0

PsExec64.exe 0 1 0 1 0 0 0 1 0 0 0

result means that the installed antivirus was not able to

identify the malware samples. When the 14 customized

samples are included in training with the machine learning-

based detector, values show that the machine learning-based

detector has been able to identify all malware samples

correctly.

IV. Evaluation with Data Slicing

In this evaluation, the available samples have been divided

were as shown in Table VI. 50-50 means 50% of the samples

were used for training, and the remaining 50% is for testing.

67-33 means 67% of the samples were used for training, and

the remaining 33% is for testing. 75-25 means 75% of the

samples were used for training, and the remaining 25% is for

testing. 80-20 means 80% of the samples were used for

training, and the remaining 20% is for testing. For the two

antivirus vendors, Webroot and Avira, the samples and

sample slicing used in the machine were transferred to the

Windows victim machine. The folder where the samples are

stored was scanned using the installed antivirus to obtain the

antivirus' accuracy.

 It can be observed in the mean values that whether the

sample for testing is using 50%, 33%, 25%, or 20% of the

samples, does impact its accuracy value. Fig. 5 shows that the

machine learning-based detectors have outperformed both

Webroot and Avira as the mean accuracy values for Webroot

and Avira are around 91.64% and 89.34%, respectively.

While the mean values for Logistic Regression, Random

Forest, Support Vector Machine, and Neural Network are around

99.13%, 99.20%, 95.20%, and 97.29% respectively. This result

means that the Random Forest followed by Logistic Regression

has performed better than Support Vector Machine, Neural

Network, Webroot, and Avira in this data slicing evaluation to

identify whether the samples are malicious or benign.

V. Performance Analysis

Section III utilized the 14 customized samples for testing, while

section IV performed a data slicing, and samples are divided by

50%, 33%, 25%, and 20% for testing. Results show that Random

Forest and Logistic Regression outperform the other machine

learning algorithms. Avira and Webroot were also evaluated if

these antivirus vendors can detect the malicious samples but have

performed poorly compared to the machine learning-based

detectors, especially when the 14 customized samples are added

in training. Section IV shows that slicing the samples to varying

quantities such as 50%, 33%, 25%, and 20% for testing does affect

the mean accuracy. It is observed that all machine learning-based

detectors have outperformed Avira and Webroot in this scenario.

On the other hand, the best performing machine learning

algorithm on this is the Random Forest at 99.20%, followed by

Logistic Regression at 99.13%.

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2676

TABLE VI

Results using Data Slicing

Slicing Logistic Regression Random Forest Support Vector Machine Neural Network Webroot Avira

50-50

Test 1 99.20% 99.20% 97.61% 96.61% 96.80% 93.60%

Test 2 98.60% 98.80% 92.60% 97.20% 86.45% 85.06%

Mean 98.90% 99.00% 95.10% 96.91% 91.63% 89.33%

67-33

Test 1 99.40% 100.00% 98.20% 97.31% 97.01% 94.61%

Test 2 98.80% 99.10% 95.51% 97.31% 97.31% 94.31%

Test 3 99.40% 99.40% 94.01% 97.60% 80.54% 79.04%

Mean 99.20% 99.50% 95.91% 97.41% 91.62% 89.32%

75-25

Test 1 99.21% 99.60% 98.41% 96.43% 96.40% 97.20%

Test 2 99.60% 99.20% 96.80% 98.80% 97.20% 90.00%

Test 3 98.40% 98.40% 94.80% 96.40% 98.80% 96.40%

Test 4 99.20% 99.20% 94.40% 97.20% 74.21% 73.81%

Mean 99.10% 99.10% 96.10% 97.21% 91.65% 89.35%

80-20

Test 1 99.01% 99.50% 99.01% 97.03% 95.50% 96.50%

Test 2 100.00% 100.00% 96.50% 98.50% 98.50% 88.50%

Test 3 99.50% 99.00% 95.50% 98.50% 97.50% 98.50%

Test 4 99.00% 98.00% 95.00% 96.00% 99.00% 96.00%

Test 5 99.00% 99.50% 94.50% 98.00% 67.82% 67.33%

Mean 99.30% 99.20% 96.10% 97.61% 91.66% 89.37%

FIGURE 5

 Evaluation with Data Slicing Results

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2677

COONCLUSION AND RECOMMENDATIONS

In this paper, results show that the created machine learning-

based detector performs better in identifying or classifying the

malicious samples than current antimalware products. This

conclusion is reinforced with the results in Table VI and Fig. 5

when Avira and Webroot were added to the evaluation. The

outcomes show that the machine learning-based detector

outperformed these antiviruses.

Two testing scenarios were performed. The first

scenario was the testing samples only used the 14

customized samples, while the second scenario testing

performed a data slicing. For the first scenario, the list of

machine learning-based detectors evaluated, with testing

samples included in the training, Random Forest and

Logistic Regression, performed better in accuracy than

other machine learning-based detectors. Implementing

this machine learning-based detector makes it possible to

detect the malware used in zero-day attacks or attacks

explicitly improvised for such an organization or

company without relying on a third-party vendor or

product.

For the second scenario, results of the first scenario

were reinforced as all four machine learning-based

detectors outperformed Avira and Webroot in identifying

the samples, whether it is malicious or benign. This

conclusion provides the feasibility of the proposal that by

implementing machine learning-based detectors,

organizations or companies do not need to wait for

vendors or third-party malware detectors to release

signatures or indicators to remediate this malware used in

the attacks. Having the capability to block such attacks

results in fewer organizations and companies being

compromised and exploited by Cybercriminals.

It is recommended to implement a machine learning-

based detector on top of the current antimalware

products. A machine learning-based detector enables an

organization to detect and block custom or specific

attacks that traditional and enterprise antimalware

vendors cannot detect and block.

REFERENCES

[1] "Microsoft report shows increasing sophistication of cyber threats,"
Microsoft on the Issues, Sep. 29, 2020. https://blogs.microsoft.com/on-

the-issues/2020/09/29/microsoft-digital-defense-report-cyber-threats/

(accessed Oct. 14, 2020).
[2] C. Cimpanu, "Financial sector is seeing more credential stuffing than

DDoS attacks," ZDNet, 2020. https://www.zdnet.com/article/financial-

sector-has-been-seeing-more-credential-stuffing-than-ddos-attacks-in-
recent-years/ (accessed Oct. 14, 2020).

[3] "Ransomware Upgrades with Credential-Stealing Tricks," Dark

Reading, 2020. https://www.darkreading.com/attacks-
breaches/ransomware-upgrades-with-credential-stealing-tricks/d/d-

id/1336846 (accessed Oct. 23, 2020).

[4] "Another massive ransomware outbreak – or was it?," Computer Fraud

& Security, vol. 2017, no. 7, pp. 1–3, Jul. 2017, doi: 10.1016/S1361-

3723(17)30055-6.

[5] I. Heritage, "Protecting Industry 4.0: challenges and solutions as IT, OT and

IP converge," Network Security, vol. 2019, no. 10, pp. 6–9, 2019, doi:

https://doi.org/10.1016/S1353-4858(19)30120-5.

[6] A. Lemay, J. Calvet, F. Menet, and J. M. Fernandez, "Survey of publicly
available reports on advanced persistent threat actors," Computers &

Security, vol. 72, pp. 26–59, Jan. 2018, doi: 10.1016/j.cose.2017.08.005.

[7] S. Mansfield-Devine, "Editorial," Computer Fraud & Security, vol. 2017,
no. 7, p. 2, Jul. 2017, doi: 10.1016/S1361-3723(17)30056-8.

[8] "The 2020 Data Breach Investigations Report – a CSO's perspective -

ScienceDirect," 2020. https://0-www-sciencedirect-
com.lib1000.dlsu.edu.ph/science/article/pii/S1353485820300799 (accessed

Oct. 14, 2020).

[9] "Microsoft : Products and vulnerabilities," 2020.
https://www.cvedetails.com/vendor/26/Microsoft.html (accessed Oct. 24,

2020).

[10] J. W. Mikhail, J. C. Williams, and G. R. Roelke, "procmonML: Generating
evasion resilient host-based behavioral analytics from tree ensembles,"

Computers & Security, vol. 98, p. 102002, Nov. 2020, doi:

10.1016/j.cose.2020.102002.
[11] J. Voris, Y. Song, M. B. Salem, S. Hershkop, and S. Stolfo, "Active

authentication using file system decoys and user behavior modeling: results

of a large scale study," Computers & Security, vol. 87, p. 101412, 2019, doi:
https://doi.org/10.1016/j.cose.2018.07.021.

[12] W. Matsuda, M. Fujimoto, and T. Mitsunaga, "Detecting APT Attacks

Against Active Directory Using Machine Leaning," in 2018 IEEE
Conference on Application, Information and Network Security (AINS), Nov.

2018, pp. 60–65. doi: 10.1109/AINS.2018.8631486.

[13] C. Hsieh, C. Lai, C. Mao, T. Kao, and K. Lee, "AD2: Anomaly detection on
active directory log data for insider threat monitoring," in 2015 International

Carnahan Conference on Security Technology (ICCST), Sep. 2015, pp. 287–

292. doi: 10.1109/CCST.2015.7389698.
[14] L. Kotlaba, S. Buchovecká, and R. Lórencz, "Active Directory

Kerberoasting Attack: Monitoring and Detection Techniques," 2020.

[15] M. Fujimoto, W. Matsuda, and T. Mitsunaga, "Detecting Abuse of Domain
Administrator Privilege Using Windows Event Log," in 2018 IEEE

Conference on Application, Information and Network Security (AINS), Nov.

2018, pp. 15–20. doi: 10.1109/AINS.2018.8631459.
[16] H. Siadati and N. Memon, "Detecting Structurally Anomalous Logins

Within Enterprise Networks," 2017, pp. 1273–1284. doi:

10.1145/3133956.3134003.
[17] H. Siadati, B. Saket, and N. Memon, "Detecting malicious logins in

enterprise networks using visualization," in 2016 IEEE Symposium on

Visualization for Cyber Security (VizSec), Oct. 2016, pp. 1–8. doi:
10.1109/VIZSEC.2016.7739582.

[18] H. Nair and R. Sridaran, "An Innovative Model (HS) to Enhance the Security

in Windows Operating System - A Case Study," in 2019 6th International
Conference on Computing for Sustainable Global Development

(INDIACom), Mar. 2019, pp. 1207–1211.
[19] E. Sindiren and B. Ciylan, "Application model for privileged account access

control system in enterprise networks," Computers & Security, vol. 83, pp.

52–67, 2019, doi: https://doi.org/10.1016/j.cose.2019.01.008.
[20] A. Jillepalli, D. Conte de Leon, F. T. Sheldon, and M. Haney, "Enterprise-

level Hardening of Web Browsers for Microsoft Windows," vol. 7, pp. 261–

274, 2018, doi: 10.12785/ijcds/070501.
[21] A. Binduf, H. Alamoudi, H. Balahmar, S. Alshamrani, H. Al-Omar, and N.

Nagy, "Active Directory and Related Aspects of Security," 2018, pp. 4474–

4479. doi: 10.1109/NCG.2018.8593188.

[22] H. Wang and C. Gong, "Design and Implementation of Unified Identity

Authentication Service Based on AD," in 2016 8th International Conference

on Computational Intelligence and Communication Networks (CICN), Dec.
2016, pp. 394–398. doi: 10.1109/CICN.2016.84.

[23] S. Freitas, A. Wicker, D. H. Chau, and J. Neil, "D2M: Dynamic Defense and

Modeling of Adversarial Movement in Networks," 2020.
[24] “sklearn.linear_model.LogisticRegression — scikit-learn 0.23.2

documentation,” 2020. https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressio
n.html (accessed Dec. 13, 2020).

Copyrights @Kalahari Journals Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2678

[25] “3.2.4.3.1. sklearn.ensemble.RandomForestClassifier — scikit-learn

0.23.2 documentation,” 2020. https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestCl

assifier.html (accessed Dec. 13, 2020).

[26] “sklearn.svm.SVC — scikit-learn 0.24.2 documentation,” 2021.

https://scikit-

learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SV

C (accessed May 16, 2021).
[27] “sklearn.neural_network.MLPClassifier — scikit-learn 0.24.2

documentation,” 2021. https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.

html#sklearn.neural_network.MLPClassifier (accessed May 16, 2021)

