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  Abstract: In 5G communication networks, polar codes with 

different sizes can be used in practical applications. By using 

shortening and puncturing techniques polarization speed gets 

increased with a substantial loss and decoding complexity 

increases. Hence we are introducing a new technique calls 

distinct polar code construction for variable sizes of 

transmitted data.  

The best channel coding technique which achieves 

channel capacity for infinite code length is Polar codes; these 

are also the forward error correction codes. In 5G 

communication networks, polar codes with different sizes can 

be used in practical applications. For that Puncturing and 

Shortening techniques have been used to express block lengths 

of different sizes other than 2n. For the construction of polar 

codes with arbitrary lengths these Puncturing technique and 

Shortening techniques use mother polar codes with some 

disadvantages. In terms of polarization speed there is 

substantial loss and decoding complexity increases while using 

these shortening and puncturing techniques. Because of loss in 

the transmission of data there is a poor performance of error 

rate. These are not suitable for practical implementation, 

because there is no perfect construction structure for frozen 

sets.  The  basic structure were implemented in puncturing and 

shortening techniques.  

 

For the construction of polar codes with different 

block sizes, a generalized construction method is proposed. If 

the length of the polar code is integer powers of 2 then we can 

use the basic polar code construction method. If not, then use 

distinct polar code construction method for infinite length of 

code word. In the generalized construction different block sizes 

can be developed by combining different size kernels over the 

same binary alphabet. Construction of polar codes with 

different block sizes (not only the powers of two) is possible 

with different kernel sizes at different stages. With this 

structure a new generalized construction for the polar codes 

designated as distinct kernel polar codes.  Because of distinct 

kernel structure, the error correcting performance gets 

increased than the polar codes constructed via puncturing and 

shortening techniques. Some of the kernels in the distinct 

kernels may have same structure and size as it results reduction 

in the encoding complexity to half of the complexity in 

construction of mother polar codes. Distinct kernel polar codes 

also have the same complexity as SC decoding of polar codes. 

 

The following sections follows encoding of polar codes I, 

Distinct kernel polar codes II, Idea of replacing procedure III, 

Construction of distinct polar codes with kernel substitution IV, 

Summary results V, Conclusion VI followed by References 

VII. 

 

I. Distinct Kernel Polar Codes Encoding 

procedure:  

 

Distinct kernel polar codes can be distinguished by 

using a transformation matrix and a frozen set. Let the polar 

code has the block length N and dimension K is totally 

determined by using transformation matrix with block length 

N as GN=Tn1⊗……⊗ Tns and a frozen set F. Depends on the 

block length, factors of Kroneker product plays vital role. 

These factors may result in different transformation matrices. 

Different polarizations may occur because of different 

transformation matrices cause different frozen sets. The 

resulting transformation matrix can be used to calculate SNR 

through density evolution algorithm or Monte-Carlo method. 

This gives the reliability of the transmitted data. The order of 

the largest kernel sum can be obtained by adding all the 

reliabilities of K dimensions. When the order of the kernel is 

decided with corresponding transformation matrix, then the 

reliable bits N-K will gives the frozen set F. To simply the 

notation Code word X=mGn, where X- code word of length-N, 

m be the message bits, Gn-generator matrix with K information 

bits are stored according to the frozen set as 1’s and the 

remaining bits as 0’s. 

 

Construction example for G6: 

G6 matrix can be constructed by using sub-kernels of 

size T2 and T3. i.e; G6= T2⊗ T3. Here, the transformation 

matrices of order 2 and 3 are used. From the knowledge of 

encoding, code word X of length-6 comprise of, information 

bits are of K and  frozen bits are of 6-K bits. With this we know 

that the distinct code construction can be obtained from the 

mixing of binary kernels (sub kernels) of sizes 2 and 3. For the 

construction of distinct kernel polar codes the procedure is 

same as the construction of polar codes, and it adds different 

sizes of binary kernels to get large kernel. 

Implementation of polar codes with different sizes 

follows the same procedure as mother code. The component of 

ministerial term in polar codes can be implemented by using 

Tanner graph. Different sizes of kernels namely 2 and 3 can be 

generated using the Tanner graph. The same procedure can be 

opted for different sizes. Because of Tanner graph, SC 

decoding is applied to decode distinct polar codes.  

For an arbitrary square matrix n× n (n≥2) called size-

n kernel exists the polarization phenomenon.  The generic 

application for the construction of polar codes with resilient 

lengths of code called distinct-kernel polar codes. This Distinct 

Kernel polar codes are employed to construct size-2 and 

supplemental of n>2 size kernel i.e; the construction method 
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depends not only on size-2 but also on size-3 as well. In 

Distinct Kernel polar codes, the code length of polar code will 

decide the decoding complexity instead of 2n- bit code length, 

as a consequence, the complexity involved in SC decoding gets 

reduced.  Ass go along with size-4 kernels are depends on small 

size kernels, probably of size-2 and for large size kernels with 

n>5 sixe can be opted. These structures have the greater 

decoding complexity while using Successive Cancellation 

algorithm.  For that, it’s better to use kernels with smaller sizes 

(n<5) to reduce the decoding complexity. For practical 

construction only of size-3 and of size-5 kernels are used. 

Although by using kernels of size-3 and size-5 have the poor 

polarization phenomenon and hence the distinct polar code 

construction method using Successive Cancelation decoding is 

not better. Moreover this complexity is reduced by replacing 

the large Kernel with two sub-kernels of same size. On 

excepting the generic construction method for resilient lengths 

of codes a further techniques are introduced to use the kernels 

of size-2i to upgrade the performance of errors. 

 

The performance of distinct polar code construction 

gets improved by using 3n- bit polar codes, as it uses two types 

of kernels with size-3 on contrasting the sizes of different 

kernels. Nevertheless, there is no experimental construction 

procedure and decoding procedure for the kernels of size-3. 

 

For better performance, a narrative and experimental 

construction for the polar codes are developed for distinct 

kernel polar code construction with kernel replacing procedure 

and proportionate decoding algorithm is introduced for generic 

construction of polar codes. With the use of kernel substitution 

the decoding complexity is greatly decreased and consequently 

performance gain could be credible to the Successive 

Cancellation decoding algorithm on Additive white Gaussian 

Noise (AWGN) channels.  

 

II. Introduction to Distinct kernel polar codes 

 

Distinct kernel polar codes are constructed for the 

flexible length polar codes and these constructions are made 

from size-2 kernel and type-a kernel. In the demonstration of 

N-bit generator matrix can be accomplished by the Kronecker 

product of the distinct kernels.  

GN= FN(i-1)⊗ FN(i-2)…….⊗ FN(1)⊗ FN(0), where i is the 

total number of stages and Sn ≥2 and n∈[0,i-1]  and the code 

length N- can be defined as N=∏𝑖−1
𝑗=0 𝑆𝑗.   

Let the generator matrix GN with distinct polar code 

with N=6 is shown in figure (a), S0=2 and S1=3. In addition to 

construction of GN, Signal flow Graph can also be employed 

for the construction of generator matrix are shown in figure (b) 

It has total I number of stages. The bit error rate (BER) of all 

bits of the generator matrix can be calculated in [1]. 

 
 

To transmit m message bits, it requires K most reliable 

bits with very low BER is preferred, and a total of N bits are 

transmitted from the transmitter side. Some of the bits are made 

permanently to 0 are N-K bits which are known as frozen bits. 

With the implication of the message and the frozen bits of 

group are known as message set and frozen set respectively. 

These are denoted by M and Mc respectively. 𝑅 =
𝐾

𝑁
 is known 

as code rate of the polar code. 
 

These encoded data can be decoded by Successive Cancelation 

decoding algorithm, and by modifying the substitute for the 

matrix of size-S for large kernel and consequently Signal Flow 

Graph can be obtained. By replacing the kernel size-S to S 

nodes will function as S functions are of divergent.  
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For instant,  a 6-bit distinct polar code construction is 

shown above figure (c).  Log likelihood ratio (LLR) for N 

channel is denoted as Ln [n∈ (0,N-1)] are the input to the Signal 

Flow Graph from the  right end. The output of the Signal Flow 

Graph is at the left side and hard decisions are modeled suitably 

for û𝑖 = Ɵ(ʌ𝑖) = {0   ʌ𝑖 ≥ 0   1      ʌ𝑖 < 0   . ʌ𝑖𝑆 is drawn from 

LiS by LLR computations. Min-sum calculation is the general 

form of decoding function. And the computational complexity 

of the decoding is calculated from the total number od LLR’s 

used in the decoding are employed to calculate Cc= N I. 

  

A scheduling tree of 6-bit, shown above, is used to 

propose complication in the timing of distinct polar codes. At 

the decoding, at the distinct stage, on combining the same 

category of nodes scheduling tree can be acquired. The 

numbers used and the types of functions are noted at each node 

in the above figure (d). The indices are arranged in descending 

order. The previously decoded bits are shown because of the 

functions, which are depended on the data transmitted. Let, at 

each node calculations required is done in singe step then the 

timing complexity is given by 𝐶𝑡 = ∑𝑖−1
𝑛=0 ∏𝑖−1

𝑗=0 𝑆𝑗 that is 

to decode 6-bit distinct code construction requires 8 stages, and 

the schedule for decoding of polar codes are shown in figure 

(d). 

 

III. Idea of replacing procedure  

 

Probability of error for mS-1 for type-y kernel is 

smaller than the size of type-x kernel. Hence, the size of the 

kernel type-x kernel cannot be chosen for practical 

applications. Type-b kernel can be chosen to communicate  an 

S-bit with K=1 code word. Finally it is clear that, all the type-x 

kernels are replaced by type-y kernel to improve error 

correction performance in distinct polar code construction.  

Let distinct polar code can be constructed from G6= 

F2 ⊗F3 and information set M is {2,4,5} and the probability of 

LBER is enclosed to 𝑝𝑏 ≤ ∑𝑛∈𝑀 𝑝𝑒(𝑀𝑛). The block error 

rate can be improved by replacing type-a kernel with type-b 

kernel and the information set remains the same and 

accordingly Signal Flow Graph can be modified as shown in 

the figure (e). 

 

 

 
 

 

This yields, Probability of error and Block error rate 

will decrease for u2, and u0 and u1are the frozen bits. By 

changing the BER of these bits, doesn’t affect the Block error 

rate. In contradiction to the remaining bits i.e; u3, u4, u5 are 

taken for replacing procedure, the probability of error for u5 

may decrease and for u4 will increase. Finally the total 

probability doesn’t change. In most of the cases, this un-

reliability exists for large kernels while applied replacing 

procedure. In the proposed replacing procedure, because of the 

un-reliability, a single type-x kernel have large number of bits 

cannot be replaced.  Kernel replacing procedure can also create 

a latest environment, less bit error rate than the original 

information bits. It is clear from the figure (b) that, the 

information bits are changed to 4 and 5, A={4,5}. The same 

kernel is also replaced by the same kernel with corresponding 

to {u0, u1, u2}. The probability error of the bit u2 may decrease 

and also it becomes less than the probability error of u4 after 

the replacing procedure. In the next scenario the information 

set A={2,5}, the corresponding block error rate get decreased. 

Later, kernel replacing procedure could be applied to type-a 

Kernel corresponding to u3, u4, u5. And applying the same 

procedure to the u5, the probability error for this bit will 

decrease and accordingly the block error rate will further 

decrease. 

 

Thus, we can conclude that, after applying replacing 

procedure, the change in the information set needs to 

regenerate. The replacing procedure can be applied to distinct 

kernel polar coding at any stage. If at stage-1, size-3 kernels are 

used, if the 6-bit generator matrix is defined in the form G6= 

T2⊗ T3. Suppose, Z=2, and size-3 kernels are interleaved at 

first stage, then we can verify whether the first si-1 bits are 

frozen or not. The last Z bits bit error rate can be improved by 

the corresponding type-akernels are replaced by the type-b 

kernel. If the same is applied before replacing procedure and 

there may be extra meaasge bits in the first Si-1 bits. This makes 

the LLR’s and the proportionate message bits are having less 

reliability and as a consequence BLER is very poor. 

 

IV. Construction of distinct polar codes with 

kernel substitution: 

 

In the generalize construction of distinct polar codes 

have several stages to construct large Kernel of size-N. in these 

several stages, some kernels may repeat at different stages. By 

acquiring all these repetitions and replacing with the same 

kernel at different stages polar codes are constructed. There 

may be a confliction that the replacing procedure should stars 

from initial stage or at the final stage.  If the replacing 

procedure starts from the initial stage, then the new message 

bits will make kernels at final stages will fail to satisfy the 

replacing procedure i.e; the first stage itself all the bits may 

frozen, and hence there may be reduction in the performance 

gain. If the replacing procedure starts at the final stage, then 

there is no chance to the initial bits to be frozen. Hence the 

replacing procedure should be done at the higher stages. 

 

Proposed Algorithm: 

1. Depends on Distinct polar codes of 2 in size  and 

type-x kernels, the initial code is generated. 

2. At the highest stage, the replacing procedure 

starts. 

 

Let the size of Kernel at the highest stage is not equal 

to 2, then kernel replacing procedure starts at each stage with ᵶ 

number of bits in which first (Sn -1) ᵶ  bits are frozen. If first 

round of replacing procedure finished, then the code set-M is 

regenerated and the upper bound of Block length error rate is 
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calculated from the sub kernel matrix. If there is no 

improvement in block error rate at particular stage, then the 

replacing procedure stops and proceed for the lower stages. As 

a result, the generator matrix Gn is revised to new one and the 

proportional information set M is generated for the target code. 

 

Replacing procedure: The specific type-a kernels on 

particular stage are substituted with type-b kernel. And the 

generator matrix is revised correspondingly.  

 

Sub-kernel matrix: in polar code construction, to generate 

information set M, Monte Carlo simulation algorithm is used 

for N- bit distinct polar code. From the revised generator matrix 

K bits are the message bits at the target SNR. Probability of the 

message bits  is calculated by the sum of BER’s of message 

bits, accordingly estimate the BER for the revised generator 

matrix Gn. this is the procedure to get an idea on kernel 

replacing procedure to check the procedure improved for 

decoding performance or not. 

 

V. Summary results: 

 

 

VI. Conclusion 

A method of distinct polar codes with substitution kernel is 

introduced. A clear-cut construction of polar code is 

introduced. Simulation results shows that the presented  

technique is better performed than other construction 

techniques. As a result construction technique is flexible for 

different lengths of polar codes with lowest complexity in the 

decoding. 
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