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Abstract 

It is crucial to forecast pillar stability in underground mines because weak pillars might provide 

serious collapse risks. We offer two ground-breaking models—the random forest (RF), C4.5 

decision tree (DT), and support vector machine (SVM) algorithms—to address this important 

issue in the context of IoT for underground mining. These models seek to precisely forecast 

pillar stability in both stone and coal mines. The W/H ratio, the uniaxial compressive strength 

of the rock (ucs), the pillar stress (p), the width (W) and height (H) of the pillar, as well as other 

crucial characteristics, are all used to estimate the stability of pillars. These factors are used as 

inputs, and the result is the stability of the pillars in the deep mines. Several performance 

measures, including accuracy, precision, recall, and F1-score, are used to assess the 

performance of the models. We show that both the RF and C4.5 DT models showed impressive 

accuracy in forecasting pillar stability through a thorough performance evaluation over the 

SVM algorithm. Additionally, we contrast the outcomes of our proposed RF algorithm with 

those of other models already in use, particularly the support vector machine (SVM) and DT, 

to see whether our model is superior. According to the comparison analysis, the suggested RF 

model stands out as a valid and workable method for assessing the stability of pillars in deep 

mines inside the IoT framework. 

Keywords: Underground Mines, Internet of Things, Machine Learning, Random Forest, 

Decision Trree, Support Vector Machine. 

 

1. Introduction 

Most underground mines rely heavily on pillars, which serve as critical structural units for 

maximizing safety and efficiency in ore extraction. A pillar is "the in-situ rock between two or 

more underground openings," as described by Coates [1]. During excavation and mining, its 

principal function is to keep workers safe by separating nearby underground apertures and 

supporting the weight of overburdened material temporarily or permanently [2-7]. Workers are 

at greater risk of injury from unstable pillars, and the risk of a rapid roof collapse is also 

increased [8]. In addition, as mining proceeds deeper, ground tensions increase, making pillar 

failure more common and catastrophic. Therefore, it is crucial to ascertain pillar stability to 

achieve productive and secure mining. 

For the last few decades, numerous academics have developed multiple ways of studying and 

predicting pillar failures. The factor of safety (FoS) is the ratio of the pillar strength to the load 



DOI : https://doi.org/10.56452/7-8-43 

Copyrights @Kalahari Journals      Vol.07 No.08 (August, 2022) 

International Journal of Mechanical Engineering 

460 

acting on the pillar structure and is commonly used to assess pillar stability. Theoretically, the 

pillar is secure when the FoS ratio exceeds 1. Nonetheless, research indicates that pillars with 

FoS beyond this threshold may fail because of irregular geometries, unclear material 

characteristics, and variations in mining processes [7, 9]. 

Predictions of pillar durability that consider the characteristics of materials and complex 

boundary conditions are often made using numerical simulation methods. Shnorhokian et al. 

[10] used FLAC3D with mining sequence possibilities to foretell pillar equilibrium. Random 

field theory and an elastoplastic finite element method (FEM) were combined by Griffths et al. 

[11] to predict pillar durability. Jaiswal et al. [12] researched the stress-strain behavior of coal 

pillars using a finite element method (FEM) analysis in three dimensions. The Finite-Discrete 

Element Method (FDEM) was created by Li et al. [13] to investigate pillar failure modes and 

mechanical behavior. The pillar collapse mechanism and the non-linear rock behavior were 

studied by Mortazavi et al. [14] using the rapid Lagrangian analysis of continuum (FLAC). 

Numerical simulation methods have a high degree of imprecision because of the anisotropy of 

rock mass and the complexity of its non-linear properties [11]. 

Practical applications of machine learning (ML) algorithms for pillar safety assessment have 

been made as more and more pillar stability examples become available. Artificial neural 

networks (ANN) were used by Tawadrous and Katsabanis [15] to investigate the durability 

features of the surface crown pillars. Ding et al. [16] analyze the feasibility of using the 

stochastic gradient boosting (SGB) model for pillar stability prediction. Research showed that 

compared to the random forest (RF), multilayer neural perceptron (MPNN), and support vector 

machine (SVM), the proposed model performed better. Wattimena [9] presented the 

multinomial logistic regression (MLR) for forecasting the pillar's stability. The pillar stability 

charts were created by Ghasemi et al. [17] using the SVM and J48 algorithms. Both models 

improved to a point where their predictions were reliable. Zhou et al. [18] evaluated the pillar 

stability of underground mines using support vector machines and fisheries discriminant 

analysis (FDA). Six different supervised machine learning techniques for pillar stability 

analysis were compared by Zhou et al. [19]. The study found that SVM and RF were 

significantly more effective. Most ML algorithms used to anticipate the pillar's stability have 

been put into practice effectively, but they all have drawbacks. Consider the a priori needs 

when using an ANN technique, such as the optimal model structure (including the number of 

hidden layers and model inputs, training procedures, and transfer functions). This is usually 

accomplished by a method of trial and error. The ANN model's primary flaw is its opaque 

forecasting mechanism. A matrix of weights and biases, which is not user-accessible, describes 

the connection between input and output variables [20]. Decision trees, such as random forest 

(RF), C4.5 decision trees (DT), and Support Vector Machine (SVM), have recently seen 

widespread success in a variety of domains and applications, including the prediction of surface 

settlement due to tunnelling and the assessment of soil liquefaction potential [21,22]. However, 

their use in rock mechanics and mining remains primarily confined to the former two areas. 

Predicting pillar durability in underground coal and stone mines is the primary focus of this 

research. To accomplish this goal, two models for predicting pillar stability are developed using 

RF, C4.5 DT and SVM algorithms. While these methods have been successfully applied in 

other contexts, a literature survey reveals that they have only been lightly investigated for use 

in evaluating rock mechanic mining. In contrast to different soft computing approaches, the RT 

and C4.5 DT algorithms may produce a detailed and understandable tree diagram. 

Here is how the rest of the paper is structured: The datasets used to ensure the stability of pillars 

in underground mines are briefly described in Section 2. An overview of the random forest, 

C4.5 decision tree, and SVM methodologies are presented in Section 3, along with the 

methodology used to forecast the stability of pillars in an underground mine. The creation of 
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the forecasting models is detailed in Section 4. Section 5 presents the proposed models' detailed 

results organised by performance criteria, while Section 6 draws conclusions and makes 

recommendations based on those results. 

 

2. Description of Database 

To evaluate the efficacy of the proposed RF, C4.5-based DT, and SVM models, this research 

drew on the pillar stability database amassed by Jaiswal and Shrivastva [26], Mohan et al. [27], 

and Esterhuizen et al. [28]. Table 1 displays data from underground stone mines in the United 

States and Indian coal mines that were recently cited by Zhou et al. [18]. Information such as 

pillar height (H), stress (p), and uniaxial compressive strength of the rock (ucs) are stored in 

the database. Also included is the pillar width (W). 

Table 2 displays the values that can be expected from each of the input variables. Researchers 

like Goodman [29] agree that Zhou et al.'s [18] choice of input parameters is a full and 

appropriate set to predict the pillar stability. Many other studies (such as Liang et al. [30]) have 

also relied heavily on these same characteristics. Table 2 gives a brief summary of the values 

for each input variable. 

 According to the pillar failure process and the instability mechanism, the database of pillar 

case histories is split evenly between successful (14 cases) and unsuccessful (32 cases). Three 

typical processes of pillar failure due to natural fracture are depicted in Figure 1 [31]. Failure 

can occur as a result of (a) the lateral kinematic release of pre-formed blocks due to increasing 

vertical load and lack of confinement, (b) the accumulation of inclined shear fractures that 

transect the pillar, which is most common in pillars with a relatively low W/H ratio, and (c) 

failure along with transgressive fractures where the fracture inclination angle with the principal 

loading axis of the pillar exceeds the angle of friction. The mechanical response of a pillar is 

particularly pronounced for the thin pillars in all of these mechanisms because of the ground's 

underlying geological characteristics. The combination of brittle and shearing processes 

increases the likelihood that broader pillars may collapse. When evaluating the strength, 

permeability, and deformability of rocks, geological discontinuities in rock strata are crucial. 

The initial step in learning more about the overall behaviour of rock masses is to characterise 

the discontinuity in geometry (such as spatial connectedness, persistence length, aperture, and 

so on) [32]. It is commonly accepted that rock strength qualities are significantly impacted by 

discontinuities in rock profile. Several cases can be cited from the rock failure literature where 

the effect of discontinuities on rock strength was underestimated and led to failure. According 

to Jessu and Spearing [33], even at higher W/H ratios, discontinuities have a significant impact 

as pillar inclination rises. Using data from laboratory experiments, Shang et al. [34] attempted 

to quantify the tensile strength of developing rock discontinuities. Data collection is the biggest 

problem faced for the indicators' applicability, despite the fact that they are considered the 

fundamental factors for quantitatively detecting the activities in the framework of the pillar. 

This study therefore takes into account these five factors. 

In this work, we considered a total of 40 datasets for the training dataset when applying the RF, 

C4.5 DT, and SVM for the testing dataset. Both the test and training sets were taken directly 

from Zhou et al.'s [18] work. 
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Figure 1: Overview architecture of the proposed framework. 

 

3.System Model 

There are many data mining and machine learning (ML) techniques available; for 

classification, the most popular ones are random forest (RF), C4.5 decision trees (DT), and 

SVM [24]. These algorithms, which are represented as decision trees, employ a divide-and-

conquer strategy through induction learning. The classification of patterns within datasets is 

made possible by the tree structure, which is a hierarchically connected network of nodes. Each 

internal node evaluates a decision constant in respect to an input characteristic or feature to 

determine the following descending node. The task of locating instances that match a given 

label falls to the leaf nodes [35]. 
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3.1Random Forest 

One of the most well-liked and successful machine learning techniques is the Random Forest 

algorithm, which is particularly good at forecasting conditions in underground mines. Its appeal 

stems from the fact that it needs little effort to model and prepare data while continuously 

producing findings that are quite accurate. As was already noted, Random Forest relies on the 

idea of decision trees but instead of using a single tree to make predictions, it generates a group 

of trees, which it appropriately calls "Random Forests." Compared to employing individual 

decision trees, this ensemble approach improves prediction accuracy. 

The Random Forest algorithm functions as follows in the context of forecasting conditions in 

underground mines: A random subset of n variables is chosen from the feature set and placed 

at each node of the decision tree. The optimal split is then decided by the algorithm using these 

randomly selected factors. Each tree in the forest goes through this process repeatedly, 

developing on its own using a different subset of the initial dataset. 

The Random Forest's power lies in its capacity to produce numerous decision trees and 

combine their forecasts through voting or averaging. The risk of overfitting is decreased by this 

aggregation procedure, which also produces a more stable and reliable prediction model. 

Additionally, the variety among the different trees is ensured by the randomness added during 

variable selection and bootstrapping, resulting in a more generalised and precise overall 

forecast. 

The Random Forest method performs exceptionally well when used to forecast conditions in 

underground mines. It is ideally suited to capturing the complicated correlations between 

various features and mine conditions due to its capacity to handle large and multidimensional 

data sets. The Random Forest can accurately forecast likely future conditions by examining 

previous data on mine conditions and the accompanying features, offering insightful 

information to mine operators and safety experts. Algorithm 1 shows how this algorithm for 

predicting underground mines operates and how the collection of decision trees works together 

to get the final forecast. Ultimately, Random Forest has become a potent instrument for 

underground mine prediction, providing accurate and dependable solutions to raise mining 

operations' safety and efficiency. 

Algorithm-1 Random forest algorithm 

1. RandomForestAlgorithm(dataset, num_trees, num_features): 

2. forest = [] 

3. for t in range(num_trees): 

4.         selected_features = random_subset(num_features, dataset.num_features) 

5.         bootstrap_sample = bootstrap_sampling(dataset) 

6.         decision_tree = build_decision_tree(bootstrap_sample, selected_features) 

7.         forest.append(decision_tree) 

8. return forest 

9. PredictCondition(random_forest, new_data): 

10. predictions = [] 

11.     for tree in random_forest: 

12.         prediction = make_prediction(tree, new_data) 

13.         predictions.append(prediction) 

14.         final_prediction = aggregate_predictions(predictions) 

15. return final_prediction 

The primary function that creates the Random Forest in the pseudo-code above is called 

RandomForestAlgorithm. The dataset containing historical information on mine conditions and 
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the value num_trees, which specifies the number of decision trees to be created in the forest, 

are provided as inputs. The number of features that will be taken into account at each split when 

building the tree is num_features. 

Based on the trained Random Forest (random_forest), the PredictCondition function predicts 

the condition of a new data point (new_data). It creates forecasts for each tree in the forest, 

then aggregates the outcomes to arrive at the final projection. 

 

3.2Decision Tree 

The Decision Tree algorithm with the C4.5 (or ID3) algorithm is a potent method for building 

a tree-based model that can forecast mine conditions based on input data in the context of 

underground mines prediction. The ID3 algorithm, created by Ross Quinlan, is expanded upon 

in the C4.5 algorithm. A thorough explanation of the Decision Tree with C4.5 algorithm is 

provided below: 

1. Data Preparation: The dataset including historical data on mining conditions and the 

relevant features must first be prepared. Each data point represents a particular mine state, 

and the features list several characteristics related to that situation. 

2. Selection of Attributes: The C4.5 algorithm builds the decision tree using a top-down, 

recursive method. Based on the attribute's capacity to maximise information gain or gain 

ratio, it chooses the optimum attribute to split the data at each node of the tree. Information 

gain quantifies the decrease in entropy (or impurity) of the data following attribute 

splitting, whereas gain ratio takes into consideration the intrinsic information of the 

attribute. 

3. Data Splitting: After the best attribute has been chosen, the dataset is divided into subsets 

according to the distinct values of the attribute. The approach builds sub-trees for each 

branch of the decision tree using each subset as a representation of a branch. 

4. Missing Values Management: The C4.5 algorithm can handle missing values in the 

dataset. In order to accommodate missing values during attribute selection and data 

splitting, it either assigns the majority class or computes the weighted average of the class 

distribution. 

5. Pruning: The C4.5 algorithm uses pruning strategies after building the tree to prevent 

overfitting. Pruning entails cutting out branches that don't make a meaningful difference 

in boosting prediction accuracy. This keeps the tree's generalisation ability while 

simplifying it. 

6. Assignment of Leaf Nodes: The decision tree's leaves correspond to the expected 

conditions in the mine. The projected condition for each branch of the tree is given as the 

majority class, or the class that occurs the most frequently in each leaf node. 

7. Prediction: The decision tree can be used to anticipate the state of fresh data points after it 

has been built. The tree moves along the branches based on the values of the input features 

starting at the root node and continues until it reaches a leaf node, which offers the 

expected mine state. 

 

The C4.5 method is well-liked because it can handle both categorical and numerical variables 

and can create decision trees that can be understood by humans. However, it could experience 

overfitting, like other decision tree algorithms, particularly if the tree is overly complex. As 

was already mentioned, the use of Random Forest reduces overfitting by combining many 

decision trees. 

Algorithm-2 C-4.5-based Decision Tree Algorithm 
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1. DecisionTreeC45Algorithm(dataset, features): 

2.  if all_data_points_belong_to_same_class(dataset): 

3. return LeafNode(class_label) 

4. if no_more_features_to_split(features) or maximum_depth_reached() 

5. return LeafNode(majority_class_label) 

6.     best_attribute = select_best_attribute(dataset, features) 

7.     decision_node = DecisionNode(best_attribute) 

8.     subsets = split_dataset(dataset, best_attribute) 

9.     for subset_value, subset_data in subsets: 

10.     sub_tree = DecisionTreeC45Algorithm(subset_data, remaining_features(features, 

best_attribute)) 

11.         decision_node.add_branch(subset_value, sub_tree) 

12.     return decision_node 

13. PredictCondition(decision_tree, new_data): 

14.     current_node = decision_tree 

15.     while current_node is not LeafNode: 

16.         attribute = current_node.attribute 

17.         value = new_data[attribute] 

18.         current_node = current_node.get_branch(value) 

19.     return current_node.class_label 

DecisionTreeC45 is used in Algorithm 2.The C4.5 algorithm's primary purpose in decision tree 

construction is algorithm. It accepts a dataset containing historical information about mine 

conditions as input, along with features that describe the attributes needed to segment the 

dataset. By choosing the optimal attribute for splitting, making decision nodes, and adding 

branches to represent the different subsets of data, the function iteratively constructs the 

decision tree. Based on the trained decision tree (decision_tree), the PredictCondition function 

is used to forecast the condition of a new data point (new_data). Starting at the root node, it 

moves up the tree, following branches based on the input feature values, until it reaches a leaf 

node. The leaf node's class label is then used to determine the projected mine condition. 

3.3Support Vector Machine Algorithm 

The Support Vector Machine (SVM) algorithm is a potent and commonly utilised machine 

learning technique in the area of predicting subterranean mines. It is possible to use the 

supervised learning algorithm SVM for both classification and regression problems. Finding 

the separating hyperplane that best splits the data points into different classes while maximising 

the distance between the hyperplane and the nearest data points (support vectors) is its main 

goal. SVM ensures improved generalisation and robustness of the model by maximising the 

margin. By utilising the kernel approach, which raises the initial feature space's dimension, 

SVM can handle both linearly and non-linearly separable data. 

This enables SVM to separate data points even when they are not linearly separable in the 

original space using a hyperplane. SVM is useful in underground mine prediction because it 

can handle high-dimensional feature spaces and noisy data, where different variables are 

connected to mine conditions. To obtain best performance, hyperparameter adjustment and the 

computational cost of SVM should be taken into account. Despite these factors, SVM continues 

to be a well-liked and dependable option for predicting conditions in underground mines, 

offering precise insights into mine conditions and improving safety and operational 

effectiveness. 
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Algorithm-3 Support Vector Machine Algorithm Pseudocode 

1. SVMAlgorithm(dataset, C, kernel, kernel_params): 

2.     X, y = prepare_data(dataset)  # X contains feature vectors, y contains 

corresponding labels 

3.     X_scaled = feature_scaling(X)  # Normalize or standardize features 

4.     model = train_svm(X_scaled, y, C, kernel, kernel_params) 

5.     return model 

6. PredictCondition(svm_model, new_data): 

7.     new_data_scaled = feature_scaling(new_data) 

8.     prediction = predict_svm(svm_model, new_data_scaled) 

9.     return prediction 

The primary function that implements the SVM algorithm for underground mines prediction 

in the aforementioned pseudo-code is SVMAlgorithm in Algorithm-3. The dataset containing 

historical data on mine conditions is provided as input, along with the C parameter controlling 

the trade-off between maximising margin and minimising classification error, the kernel 

specifying the kernel function to use (e.g., linear, polynomial, radial basis function, etc.), and 

kernel_params denoting any additional parameters needed by the selected kernel function. 

The function prepare_data takes the dataset's feature vectors X and related labels Y and extracts 

them. The function feature_scaling scales the feature vectors to a common scale by normalising 

or standardising them. Using the scaled feature vectors X_scaled and the labels y, the train_svm 

function trains the SVM model. It creates the ideal hyperplane that divides the data points using 

the supplied C and kernel together with its related kernel_params. PredictCondition is a 

function that uses the trained SVM model svm_model to forecast the condition of a new data 

point new_data. It utilises feature_scaling to scale the new data before applying the SVM model 

to forecast the value of the new data point. 

 

4.Dataset Description 

The proposed C4.5-based decision tree, Support Vector Machine (SVM), and Random Forest 

models were evaluated and their performance was compared using a pillar stability database 

that had previously been compiled by Jaiswal and Shrivastva [26], Mohan et al. [27], and 

Esterhuizen et al. [28]. The dataset, which was most recently cited by Zhou et al. [18], 

comprises of 46 pillar examples from both Indian and American underground coal mines. The 

database contains a number of input variables, including the pillar W/H ratio, pillar stress, and 

uniaxial compressive strength of the rock (ucs). Based on the failure process and instability 

mechanisms discovered in the pillars, the database's pillar instances are divided into two 

categories: stable (14 cases) and failed (32 cases). 

Three typical failure modes for naturally fractured pillars are shown in Figure 1. These include 

failure with lateral kinematic release of pre-formed blocks due to increasing vertical load and 

lack of confinement, failure from inclined shear fractures traversing the pillar (common in 

pillars with low W/H ratios), and failure along transgressive fractures where the fracture 

inclination angle exceeds the angle of friction. Particularly for thin pillars, a pillar's mechanical 

reaction is intimately correlated with the geological composition of the ground, but larger 

pillars are more susceptible to collapse as a result of a confluence of brittle and shearing forces. 

The strength, permeability, and deformability of rock masses are greatly influenced by the 

existence and features of geological discontinuities. Analysing the behaviour of rocks requires 

an understanding of the geometry and characteristics of these discontinuities. For the purpose 

of quantitative analysis and pillar stability prediction, the study focuses on five primary 
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parameters: pillar width, pillar height, pillar W/H ratio, pillar stress, and uniaxial compressive 

strength of the rock. Although gathering data to evaluate the relevance of these indicators 

remains difficult, they are thought to be essential for examining pillar activities in the context 

of the current research. 

 

5.Results and Discussions 

The accuracy, precision, recall, and F-score performance metrics for the three algorithms -- 

RF, DT with C4.5, and SVM -- when trained on the underground mines dataset for the "failed" 

class are shown in the barplot in Figure 2. The outcomes demonstrate how well each algorithm 

predicted the failed class. With the highest accuracy, precision, recall, and F-score among the 

three algorithms, RF outperforms the competition on all criteria. This shows that the majority 

of failed instances are correctly classified by RF, leading to fewer false positives and false 

negatives and a more accurate and dependable forecast. While accuracy, precision, recall, and 

F-score fall between the best and worst performing algorithms, DT with C4.5 exhibits 

intermediate performance. It does reasonably well in forecasting the failed class, but the RF 

method outperforms it. Although SVM is regarded as a powerful algorithm in many 

applications, it performs minimally in this situation. In comparison to the other methods, SVM 

has considerably poorer accuracy, precision, recall, and F-score. This suggests that SVM has 

trouble correctly identifying instances of the failed class, which results in more 

misclassifications and less accurate prediction. 

When three algorithms—RF, DT with C4.5, and SVM—were tested on the underground mines 

dataset for the "failed" class, the accuracy, precision, recall, and F-score metrics for each are 

shown in the barplot in Figure 3 for the "failed" class. In every statistic, RF exceeds the 

competition, showing the highest accuracy, precision, recall, and F-score. This shows that the 

majority of the test set's unsuccessful cases are accurately classified by RF, resulting in fewer 

false positives and false negatives and a more accurate and balanced forecast. With its accuracy, 

precision, recall, and F-score falling between RF and SVM, DT with C4.5 exhibits intermediate 

performance. Although it predicts the failed class in the test set rather well, RF performs better 

all around. Despite having a reputation for being a strong algorithm in many applications, SVM 

performs poorly in this situation. When compared to the other algorithms in the test set, it 

displays much worse accuracy, precision, recall, and F-score. This shows that SVM has 

difficulty correctly identifying instances of the failed class, which results in more incorrect 

classifications and fewer precise predictions. In conclusion, the barplot's outcomes show that 

RF, followed by DT with C4.5, is the most successful method for predicting the "failed" class 

in the underground mines dataset. SVM performs poorly in this particular prediction job, hence 

RF is recommended for obtaining reliable and accurate results. 
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Figure 2: Comparison of performance metrics for different machine learning models over the 

training set for failed classes. 

 

Figure 3: Comparison of different performance parameters for different machine learning 

models for test set of the failed class. 

 

In Figure 4, the barplot comparison for accuracy, precision, recall, and F1-score performance 

metrics for the three algorithms like RF, DT with C4.5, and SVM, when trained on the 

underground mines dataset for the "stable" class are shown in the barplot. The findings are 

intended to evaluate how well each method predicts occurrences of the stable class. In terms of 

all measures, RF performs best, outperforming the other two algorithms in terms of accuracy, 

precision, recall, and F1-score having respective values of 97.67, 97.41, 97.12, and 97.67. This 
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suggests that RF correctly categorises the vast majority of stable cases in the training set, 

producing fewer false positives and false negatives and producing a more accurate and 

balanced forecast. While accuracy, precision, recall, and F1-score fall between the best and 

worst performing algorithms, DT with C4.5 exhibits average performance with values of 95.31, 

94.32, 95.11, and 95.20 respectively. It does reasonably well at predicting the stable class in 

the training set, although the RF algorithm outperforms it. SVM exhibits nominal results in this 

situation despite. For the stable class in the training set, SVM's accuracy, precision, recall, and 

F1-score are relatively lower than those of the other algorithms with values 93.16, 93.18, 93.90, 

and 93.01 respectively. This shows that SVM has trouble correctly identifying instances of the 

stable class, which results in more misclassifications and less accurate prediction. 

In Figure 5, the barplot comparison for test set pertaining to the stable class of underground 

mines dataset shows the different performance evaluation adopted in this study for the three 

machine learning models such as RF, DT, and SVM. It was observed that the RF outperforms 

the other two algorithms by providing accuracy, precision, recall, and F1-score of 95.36, 95.13, 

95.21, and 95.40 respectively. Further the DT with C4.5 implementation provides a fairly 

average performance metrics of 92.01, 92.36, 92.16, and 92.24 respectively for accuracy, 

precision, recall, and F1-score, which is lower as compared to the RF algorithm. Finally, the 

SVM algorithm provides the lowest performance of 90.59, 89.31, 89.54, and 90.69 for 

accuracy, precision, recall, and F1-score values respectively over the test set for stable classes, 

which is observed to be significantly lower as compared to the RF algorithm.  

 

Figure 4: Comparison of different performance parameters for different machine learning 

models for training set of the stable class. 
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Figure 5: Comparison of different performance parameters for different machine learning 

models for test set of the stable class. 

 

Conclusions and Future Works 

This study uses data gathered from mines in the USA and India to apply RF, C4.5-based DT, 

and SVM models to estimate the pillar stability in underground mines. The created models use 

important input factors, such as pillar width (W), pillar height (H), pillar W/H ratio, uniaxial 

compressive strength, and average pillar stress to forecast the stability of pillars in the context 

of IoT and underground mining. 

The following are the study's main conclusions: 

1. Contrary to many sophisticated soft computing techniques, the proposed models are simple 

to use and don't require much training. Their conclusions are well in line with engineering 

judgements and intuitions since they explicitly establish links between the input and output 

variables. 

2. The RF model obtains a remarkable classification accuracy of 99.89% and 97.67% 

respectively, during both the training stage of the failed and stable classes, while the testing 

accuracy was at 98.69% and 95.36% respectively for the failed and stable classes, 

depicting the efficacy of the RF algorithm. These impressive accuracy levels show the 

model’s effectiveness and practical application in real-world situations. 

3. The implemented RF model has comparable performance to the DT and SVM model, and 

its simplicity enables simple interpretation through graphical results. However, the implicit 

processing that occurs during the training phase of SVM makes it difficult to understand 

the network's general structure, suggesting that it may lack understanding of the underlying 

mechanics of the issue. 

4. The RF model outperforms the C4.5 decision tree model and SVM in terms of model 

performances, showing more accurate predictions regarding pillar stability in underground 

mines. 

5. The presented models offer a great deal of room for growth in the future, especially with 

the acquisition of more comprehensive and well-balanced pillar stability databases. The 
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ability of the models to predict outcomes can be improved by expanding the amount of 

data available. 

To properly assess the accuracy of these models for predicting pillar stability in diverse 

underground mining settings, it is advised to work with larger and more balanced pillar stability 

databases in future study. Additionally, these models can be extended and modified by taking 

into account other ground type and structural geology-related parameters, enabling a more 

thorough evaluation of pillar stability in IoT-based underground mining applications. 

Exploration and integration of this data will help us understand the pillar stability prediction 

problem better, which will lead to new opportunities for improving underground mining 

operations' efficiency and safety. 
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