International Journal of Mechanical Engineering

HYPERCUBES OF FQ5, FQ6 AND THEIR FAULT TOLERANCE

N. Velmurugan

Assistant Professor, PG and Research Department of Mathematics, Theivanai Ammal College for Women (Autonomous), Villupuram-605602, Tamil Nadu, India.

R. Priyadharshni

II-M.Sc Mathematics, PG and Research Department of Mathematics, Theivanai Ammal College for Women (Autonomous), Villupuram-605602, Tamil Nadu, India

ABSTRACT

Let G=FQ5 and FQ6 be a 5-dimensional and6-dimensional fault tolerance of folded hypercubes, Based on Interconnection network. There are several types of connectivity For measuring the fault tolerance of folded hypercubes .But in this paper we use component connectivity. Let G=(V,E) be a connected graph. A r-component is a cut of G then r-component edge connectivity c μ r(G) can be defined as r-component edge connectivity is determined by the following condition :

1)c $\mu 2(Q_{K}) = \mu(Q_{K}) = 2k-1$ for $k \ge 2, 4$) c $\mu 2(FQ_{K}) = k+1$ for $k \ge 3, 2$) c $\mu 5(Q_{K}) = 4k-2$ for $k \ge 2, 5$) c $\mu 5(FQ_{K}) = 4k+1$ for $k \ge 3, 3$) c $\mu 6(Q_{K}) = 5k-2$ for $k \ge 2, 6$) c $\mu 6(FQ_{K}) = 5k+1$ for $k \ge 3. 3$

Key words: Interconnection networks ,folded hypercube ,r-component edge connectivity

1.Introduction

In this paper we give FQ5 and FQ6 in fault tolerance of folded hypercube .Let G=(V,E) to be connected graph ,with NG(v) representing the neighbours of a vertex v in G (just N(v)) and E(v) representing the edges incident to v.

Furthermore given $S \subseteq V, G[s]$ is the subgraph induced by S, then NG(v) is the neighbours of a vertex v then $N_G(S) = \bigcup_{v \in S} N(v)$ -s, $N_G(s) = N_G(s) \cup S$ and G-S shows a subgraph of G through the vertex set V/S.

If S,T \in V,d(S,T) represents the shortest (S,T) path. Then denote the set of edges of G with one end in A and the other in B by [A B] for A,B \subseteq V.A set of vertices whose deletion produces a graph with atleast r-component is known as an r-component cut of G.Similiarly, the r-components edge connectivity, $C\mu(G)$ can be defined for each positive integer, S we can show that $CSr+1(G)\geq CSr(G)$. If G-S is not connected and each component of G-S has more than n vertices, we call $S \subseteq V$. The cardinality of the minimum extra-cuts is the extra connectivity $n_n(G)$ [1].

Figure 1:FQ5 2. PRELIMINARIES

Definition 2.1. Graph

The Graph is a pair of(V,E). Where V is a finite set of nodes and E is a finite set of edge.

Definition 2.2. Edge

The line connecting a pair of nodes is called an Edge. It is represents as 'E'.

Definition 2.3. Vertex

Vertices are also called nodes. It is a point or a circle .It is the fundamental unit from which graphs are made .It is represents as 'V'

Definition 2.4. Hypercube

Let k be a positive integer. The k-dimensional balanced hypercube, denoted by BH_k , has 2^{2k} vertices, each labeled by $(b_0, b_1, ..., b_{i-1}, b_i, b_{i+1}, ..., b_{n-1})$, where $b_i \in \{0, 1, 2, 3\}$ for all $0 \le i \le k-1$. An arbitrary vertex $(b_0, b_1, ..., b_{i-1}, b_i, b_{i+1}, ..., b_{k-1})$, is adjacent to the following 2k vertices:

1)(($b_0 \pm 1$)mod4, $b_0, b_1, ..., b_{i-1}, b_i, b_{i+1}, ..., b_{k-1}$) where $0 \le i \le k-1$

 $2)((b_0 \pm 1) \mod 4, b_0, b_1, \dots, b_{i-1} (b_i + (-1)^{b_0} \mod 4, b_{i+1}, \dots, b_{k-1}) \text{ where } 0 \le i \le k-1.[6]$

3. SOME PROPERTIES OF FIVE AND SIX DIMENSION HYPERCUBE

The five and six dimensional hypercube networks are represented by Q5 and Q6.A k-dimensional hypercube is represented by Q_k . Then $Q_k = (V, E)$ and $|V| = 2^k$ and $|E| = k2^{k-1}$. A k-dimensional folded hypercube that represented by FQ_k is proposed by El-Amawy and Latifi [2]. FQ_k is obtained from Q_k by adding 2^{k-1} edged called complementary edges. Each edge is between the vertices, $y=(y_1,...,y_k)$ and $\overline{y}=(\overline{y_1},...,\overline{y_k})$, where $\overline{y_i}=1-y_i$ then FQ_k is obtained from Q_k by adding a perfect matching M.where $M=(y,\overline{y_i})$; $y \in v(Q_k)$, then Q_k is expressed as $Q_{K-1}^0 \odot Q_{K-1}^1$. Where Q_{K-1}^0 and Q_{K-1}^1 are k-1 dimension hypercube with the prefix 0 and 1 respectively.

Copyrights @Kalahari Journals

Vol.7 No.4 (April, 2022)

Furthermore Q_{K} can be expressed as $G(Q_{K-1}^{0}:Q_{K-1}^{1},M_{0})$ where $M_{0} = \{(0s,0s):0s \in v(Q_{K-1}^{0}), 1s \in v(Q_{K-1}^{1})\}$. In this case FQ_{k} can be expressed as $G\{(Q_{K-1}^{0}:Q_{K-1}^{1},M_{0}+\overline{M}\}$ where $\{(0s,1s):0s \in v(Q_{K-1}^{0}), 1s \in v(Q_{K-1}^{1})\}$. and $\overline{M_{0}} = \{(0s,1s):0s \in v(Q_{K-1}^{0}), 1\overline{S} \in v(Q_{K-1}^{1})\}$. [3]

 FQ_k is (k+1)-connected and (k+1)-regular. In addition FQ_k is a cayley graph. It has a diameter [k/2], which is nearly half that of Q_k . As a result, the folded hypercube FQ_k is a better version of the hypercube Q_k .

The analysis of the fault tolerance of folded hypercubes has recently attracted much researches. If r=2,3,.,n+1 determines the r-component connectivity of the folded hypercube Q_k , and r=k+2,k+3,... determines the r-component connectivity of folded hypercube Q_k .

In this paper ,we obtain that ,

Figure 2:FQ6

Copyrights @Kalahari Journals

Vol.7 No.4 (April, 2022)

4. Connectivity of Hypercube And Folded Hypercube

The vertices that pass through the k^{th} coordinate of a binary string represented differently v's through Uk. similarly vjk is the vertex where the k bit binary string is clearly v_{kk} =u.

Lemma 4.1.

Any two vertices of FQ_k have exactly two common neighbours for k 24 if they have any.[4]

Proof.

Prove any two vertices, $FQ_k = G\{Q_{K-1}^0; Q_{K-1}^1, M_0, \overline{M}\}$ has two adjacencies incommon with $k \ge 3$. It is known that any two nodes in a Q_k have two common reighbours only if they exist.

Case 1:

Both vertices at $V(Q_{K-1}^0)$ or $V(Q_{K-1}^1)$ suppose the two nodes are 0s and 0t. Suppose 0s and 0t have two neighbors in common with Q_{K-1}^0 . The definition of Q_{K-1}^0 means that 0s and 0t are exactly different at the two bit positions. Then $\{1s,1\overline{S}\} \cap \{1t,1\overline{t}\} = \phi$ for k ≥ 3 . Therefore 0s and 0t have exactly two common adjacencies to FQ_k because 0s and 0t do not have a common adjacency to Q_{K-1}^1 .

Suppose that Q_{K-1}^0 has no neighbors in common 0s and 0t. For $s=\overline{t}$ then $\{1s,1\overline{s}\}=\{1t,1\overline{t}\}$. Therefore 0s and 0t have exactly two common neighbours in FQ_k . For $s\neq \overline{t}$, Then $\{1s,1\overline{s}\}\cap\{1t,1\overline{t}\}=\phi$ Therefore 0s and 0t have no neighbours in common with FQ_k .

Case 2:

One of the two nodes is at $V(Q_{K-1}^0)$ and the other is at $V(Q_{K-1}^1)$. Suppose $0 \le V(Q_{K-1}^0)$ and $1 \le V(Q_{K-1}^1)$ without loss of generality. If there exist an j such that $V \in \{s_j, \overline{s}_j\}$ then $|NFQ_k(0s) \cap NFQ_k(1t)| = \{0s_1, ..., 0s_n, 1s, 1\overline{s}\} \cap \{1t_1, ..., 1t_n, 0t, 0\overline{s}\}| = 2$

Therefore 0s and 1t have two neighbours in common with FQ_k If v not belongs to{sj, $\bar{s}j$ },for (j=1,2,...,n) then|NF Q_k (0s) $\bigcap NFQ_k(1t)|=|\{0s_1,...,0s_n,1s,1\bar{s}\} \cap \{1t_1,...,1t_n,0t,0\bar{s}\}|=0$. That is 0s and 1t have a common neighbor for FQ_k .

THEOREM4.1

 $c\mu 5(Q_k) = 4k-2$ for $k \ge 2$

Proof:

By using theorem 2.7[1], Take an edge P_3 =stu then |E(s)UE(t)UE(u)|=4k-2.and Q_k -E(s)-E(t)-E(u) has at least 4 connected components.

i.e)cµ5(Q_k)≤4k-2.

Next show that $c_{\mu}5(Q_k) \ge 4k-2$ by Mathematical induction .it is true for n=2,3,4,5,6.suppose n \ge 7 assume that true for all k < n.prove that k=n.Let $F \subseteq E(Q_k)$ with $|F| \le 4k-3$, and Q_k -F has at least 4 components .since $Q_k = Q_{K-1}^0 \odot Q_{K-1}^1$. Case 1:

 $Q_{K-1}^0 - F$ is connected. If Q_{K-1}^1 -F has at least 4 components ,thencµ5(Q_k -1)≥4k-7 by the hypothesis ,at most two edges since the vertex Q_{K-1}^1 has a neighbor in Q_{K-1}^0 and Q_k -F has at most 3 components Case 2:

Copyrights @Kalahari Journals

Vol.7 No.4 (April, 2022)

 $Q_{K-1}^0 - F$ has only two connected component, Then $|E(Q_{K-1}^0) \cap F| \ge \mu(Q_k-1) = k-1$ and $|E(Q_{K-1}^1) \cap F| \le 2k-2$ that $c\mu = 3(Q_{K-1}) \cap F$ has only two connected component, Then $|E(Q_{K-1}^0) \cap F| \ge \mu(Q_k-1) = k-1$ and $|E(Q_{K-1}^1) \cap F| \le 2k-2$ that $c\mu = 3(Q_{K-1}) \cap F$ has only two connected component, Then $|E(Q_{K-1}^0) \cap F| \ge \mu(Q_k-1) = k-1$ and $|E(Q_{K-1}^1) \cap F| \le 2k-2$ that $c\mu = 3(Q_{K-1}) \cap F$ has only two connected component, Then $|E(Q_{K-1}^0) \cap F| \ge \mu(Q_k-1) = k-1$ and $|E(Q_{K-1}^1) \cap F| \le 2k-2$ that $c\mu = 3(Q_{K-1}) \cap F$ has only two connected component, Then $|E(Q_{K-1}^0) \cap F| \ge \mu(Q_k-1) = k-1$ and $|E(Q_{K-1}^1) \cap F| \le 2k-2$ that $c\mu = 3(Q_{K-1}) \cap F$ has only two connected component, Then $|E(Q_{K-1}^0) \cap F| \ge 2k-2$ that $c\mu = 3(Q_{K-1}) \cap F$ has only $|E(Q_{K-1}) \cap F| \le 2k-2$.

If Q_{K-1}^1 –F has at least 3 components, then $|E(Q_{K-1}^0) \cap F| \ge 2k$ -3 and $|E(Q_{K-1}^0) \cap F| \le k$. then Q_k -F has at most two components. Hence Q_{K-1}^1 –F has at most two components, we have $|[Q_{K-1}^0, Q_{K-1}^1]| > 3k$ -3(n≥7), and Q_k -F has at most 3 components.

THEOREM 4.2:

 $c\mu 6(Q_k) = 5k-2$ for $k \ge 2$

Proof:

Take an edge P_4 = stuv then |E(s)UE(t)UE(u)UE(v)|=5k-2.and Q_k -E(s)-E(t)-E(u)-E(v) has at least 5 connected components.

ie)c μ 6(Q_k) \leq 5k-2.

Next show that $c\mu 5(Q_k) \ge 5k-2$ by Mathematical induction .it is true for n=2,3,4,5,6.suppose n ≥ 7 assume that true for all k<n.prove that k=n.

Case 1:

 $Q_{K-1}^0 - F$ is connected, If Q_{K-1}^1 –F has at least 5 components, then $c\mu 6(Q_k-1) \ge 5k-7$ by the hypothesis , at most two edges since the vertex Q_{K-1}^1 has a neighbor in Q_{K-1}^0 and Q_k -F has at most 4 components

Case 2:

 $Q_{K-1}^0 - F$ has only two connected components Then $|E(Q_{K-1}^0) \cap F| \ge \mu(Q_k-1) = k-1$ and $|E(Q_{K-1}^1) \cap F| \le 5k-2$ that $c\mu \Im(Q_k-1) = 5k-3$. If $Q_{K-1}^1 - F$ has at least 4 components, then $|E(Q_{K-1}^0) \cap F| \ge 5k-3$ and $|E(Q_{K-1}^0) \cap F| \le k$. then Q_k -F has at most two components

Hence Q_{K-1}^1 –F has at most two components, we have $|[Q_{K-1}^0, Q_{K-1}^1]| > 5k-3(n \ge 7)$, and Q_k -F has at most 3 components.

And because the hypercube Q_k is the subgraph of folded hypercube FQ_k .we can apply the similar method to FQ_k

5. CONCLUSION

Hypercube network Q_k has become one of the most famous interconnect networks. The folded hypercube FQ_k could be a variant of Q_k . If r=2,3,4,5,6 determines the r-components connectivity of folded hypercube Q_k and FQ_k . Future research on this topic the folded hypercube of FQ7 and FQ8.

References

- [1] LitaoGuo 'Fault tolerance of hypercubes and folded hypercubes' https://www.laras.org/iaras/journals/ijmcm.
- [2] A. El-Amawy. S. Latifi, Properties and performance of folded hypercube, IEEE Trans .parallel Distrib, syst, 2, 1991, pp-31-42
- [3] Qi Cheng PingshanLi, MinXu* conditional (edge-)fault -tolerant strong Menger (edge) connectivity of folded hypercubes* https://doi.org/10.1016/j.tcs.2018.03.011
- [4] Q.Zhu. J.Xu. X.Hou. M.Xu on reliability of the folded hypercube ,inform .sci, 177, 2007, pp. 1782-1788
- [5] Q. Zhu. J. Xu, onrestriced edge connectivity and extra edge connectivity of hypercubes and folded hypercubes, J. University of science and technology of china 36(3),2006.pp,246-253
- [6] Wei Shi the signed(|G|-1)-subdominationnumber of balanced hypercubes doi:10.1088/1742-6596/1978/1/012040
- [7]S.Hsieh, Extra edge connectivity of hypercube-link networks, Int.J.Parallel Emergent Distrib syst.28, 2013, pp. 123-133
- [8] L.Lin,L.Xu,S.Zhou,Relating the extra connectivity and the conditional diagnosability of regular graphs under the comparsionmodel,theoretical comput,Sci.618,2016,pp.21-29

Copyrights @Kalahari Journals

Vol.7 No.4 (April, 2022)

- [9] J. Xu. Q. Zhu, X. Hou, T. Zhou, On restricted connectivity and extra connectivity of hypercubes and folded hypercubes, J. Shanghai Jiao-tong Univ., Sci.10(2),2005,pp.203-207
- [10] J. Bondy. U. Murty, Graph theory and its application, Academic Press, 1976.

Copyrights @Kalahari Journals