
DOI : https://doi.org/10.56452/7-4-244

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

2018

ISSN: 0974-5823 Vol. 7 No. 4 April, 2022

International Journal of Mechanical Engineering

Detection of location of errors in code Using

Deep Learning Ensembling methods

Arun Kumar Rai

Asst. Professor, Department of Computer Science, Graphic Era Hill University, Dehradun,

Uttarakhand India 248002

Abstract:

Machine learning has the capacity of collecting raw data from a repository and converting it

into a form that can be used for calculation and prediction of software bugs. It is usually

preferable to identify a software problem as soon as possible in order to minimise the amount

of time and money spent on fixing it. It is necessary to apply the wrapper and filter technique

in order to discover the most optimum software metrics. The primary goal of this article is to

identify the most effective model for predicting software bugs. The goal of certain machine

learning applications is to learn characteristics of data sets in situations when the right

solutions are not previously known by human users. Because there is no trustworthy test

oracle for machine learning software, it is difficult to test such software.

Key words: Machine Learning, classification, clustering, Support Vector Machine, Software

Defect Prediction.

1. Introduction

Machine learning methods are a crucial field of computer science that may be used to predict

the development of software problems. They are becoming more popular. A software bug is

one of the most severe issues that may occur in the computer industry and is one of the most

difficult to detect. It is usually desirable to have the fewest amounts of software defects and

for the software system to attain the greatest degree of accuracy feasible. This is especially

true for mission-critical software systems. As an example of machine learning models, the

regression technique is used in this article to model Linear Regression. Other machine

learning models discussed in this article include the Random Forest model, the Neural

Network model, the Support Vector Machine model, the Decision Tree model, and the

Decision Stump model. More specifically, the goal of this research is to identify the most

effective machine learning model that may be used to forecast software bug occurrences. In

this article, we suggest a technique of software testing that is meant to address this problem in

some way.

As software's dependence on and complexity grows, the need for maintainable, high-quality,

low-cost software grows in parallel with these advancements as well. A software defect

prediction system, on the other hand, is needed in order to reduce the amount of maintenance

required in software operation while simultaneously improving the quality of software in

DOI : https://doi.org/10.56452/7-4-244

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

2019

real- world situations. Putting in place an early detection system will enable developers to

provide maintainable software in a shorter period of time since it will allow for the rapid

correction of any issues that are discovered. There has been a significant increase in interest

in the field of software engineering, particularly in the area of software defect prediction,

during the last 30 years. Different performance comparison metrics, such as correlation, R

Squared, mean square error (MSE), and accuracy, were calculated for a variety of machine

learning models, and the results were then compared to one another. As for the rest of the

paper, it was organised in the following way: It is the purpose of this article to discuss how to

ensure the dependability of machine learning (ML) systems, with a special focus on software

testing. In particular, traditional software engineering processes and tools do not easily

translate to machine learning applicationsIt is a general phrase that is used to describe a

wide group of software systems that do not have access to a trustworthy test oracle that can

be used to test them. It is possible to show theoretically that ML algorithms of the highest

quality exist, but this does not guarantee that an application will correctly implement or use

the technique; as a result, software testing is needed [2].

The three elements of our approach for producing test cases are as follows: analysis of the

problem domain and related data sets; analysis of the algorithm as stated; and analysis of

implementation runtime decisions during the implementation phase.

2. Machine Learning Models

Machine learning is a subfield of Artificial Intelligence that is concerned with the

development of a system that will learn from and make predictions based on data collected.

As every company and individual tries to develop an intelligent application, machine learning

has climbed to the top of the list of the most popular subjects on the internet. Unsupervised

learning and supervised learning are the two kinds of machine learning that may be carried

out at the same time. When data is analysed without supervision, unsupervised learning may

be used to find hidden patterns in it. Clustering is a technique for learning without the need of

a supervisor. The technique of supervised learning is used when it is required to train a model

in order to make a prediction. This research was able to predict the optimum model for

software bug prediction using regression methods applied to machine learning models, which

was subsequently utilised in a later paper. This research made use of six different machine

learning models [6].

A. Linear Regression

Predictive analysis is often carried out with the use of linear regression, which is a statistical

method. To identify the relationship between the response variable (dependent variable) and

one or more of the explanatory factors (independent variables), this model is employed

(independent variable).

B. Decision Tree

If you're looking for predictive modelling methods, the decision tree is one of the supervised

learning techniques that may be used in classification and regression. As an added benefit of

DOI : https://doi.org/10.56452/7-4-244

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

2020

using decision trees, they are capable of coping with datasets that include errors and missing

information. On the downside, decision trees are too sensitive to the data in the training set,

which may include irrelevant or noisy information.

C. Support Vector Machine

Vector machine learning makes use of supervised computer learning methods such as

classification, regression, and outliers detection to assist with the learning process. SVM

works well when data sets are small, since the amount of time required for training is

decreased, resulting in faster results. As data sets become less noisy, they become more

appropriate models for the problems they are presented with. Statistical learning machines

(SVMs) are used in a number of applications, including face identification, optical character

recognition (OCR), spam categorization, financial time series forecasting, and other areas.

D. Neural Network

In order to establish the connection between input and output, to predict software problems

and to detect patterns, it is feasible to use neural networks.

E. Decision Stump

Choice Stump is a machine learning model that mimics the process of making a decision in a

given situation. The Decision Stump may be conceived of as a one-level decision tree with a

single decision point. When the feature selected has significant values, the choice process

generally results in the best outcome or results in the decision process continuing to develop.

3. Background

The creation of an artificial intelligence (AI) application that contains dynamic

information about the present gadgets is something we're working on as a group. Because

every device will ultimately fail, ("will fail" vs. "will not fail") is inadequate because, given

enough time. While the prototype application generates rankings utilising both MartiRank

and SVM algorithms, it is more than just a piece of academic research since it has real-world

implications rather than being simply academic in nature.

3.1 Machine learning fundamentals

Supervisory machine learning is often split into two phases, which are as follows: Each

example includes a number of attribute values as well as a single label, all of which are

examined in the first phase of the investigation (known as the learning phase). After

analysing a collection of training data that includes instances with multiple attribute values as

well as a single label, the first phase (also known as the learning phase) is performed. In the

end, this study produced a model that attempted to make broad generalisations about the

connection between the qualities and the label. This is done in the second phase, when the

model is applied to a fresh, previously unknown data set (the testing data), where the labels

are not known beforehand (this is known as the validation data).

DOI : https://doi.org/10.56452/7-4-244

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

2021

3.2 SVM and MartiRank

SVM is a machine learning method that belongs to the “linear classifier” family of

algorithms. It is charged with finding a (linear) hyperplane that differentiates samples from

different classes based on their characteristics. Because each example from the training data

includes K characteristics, the SVM treats each example from the training data as a vector

with K dimensions (and attempts to separate the instances using a hyperplane with K-1

dimensions) during the learning phase. The SVM's "kernel" influences the kind of hyperplane

that is generated; in this article, we look at the linear, polynomial, and radial basis kernels,

among other things.

3.3 Maximum Voting Classifier (MVC)

As a result of using the maximum voting technique, a large number of classifiers may be used

to make predictions and evaluate the data that they produce in real time. The final prediction

is based on which candidate got the most number of votes in the previous election (more

than half). If you want to enhance the accuracy of this technique, you may combine multiple

classifiers together.

3.4 Extra Tree Classifier (ET)

The numerical input figures used in this technique are used to further randomise a tree

construction. The technique would transition. There is no rhyme or reason to the method by

which the cut of point is selected. In particular, this approach is ideally suited to situations

where there are a high number of numerical features that are subject to fluctuations. The

method, which employs smoothing to enhance accuracy while also minimising any

computational problems associated with finding the location of random forests and

conventional trees, has been shown to be successful.

3.5 Passive Agressive Classifier (PAC)

If the model falls into the proper kind of categorization classification, it is kept under the

Passive classification. All incorrect classifications should be rectified in aggressive mode in

order to account for the misclassified case that was shown. While it is true that updates are

hampered by a lack of sufficient information, it is also true that a better model will aid in the

correction of any mistakes that occurred during the previous time period.

3.6 Xgboost

A gradient-boosted decision tree method created by the Distributed Machine Learning

Community is known as Gboost (DMLC). When used in combination with gradient-boosted

decision trees, it is well-known for delivering increased performance and speed as a result.

Tianqi Chen developed and used Xgboost for the first time in the year (1995), and it has

shown to be a very successful way of giving a boost to computers since its inception. This

project has gone through a number of revisions under the supervision of many different

developers. Methods such as treestreme and xGBoost are used to help tree boosting

approaches in making full use of all available hardware and memory resources. This allows

DOI : https://doi.org/10.56452/7-4-244

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

2022

for their deployment in computing settings, as well as for the modification and improvement

of the algorithm. Gradient boosting may be accomplished in XGBoost via the use of three

distinct techniques: stochastic boosting, regularised boosting, and gradient boosting, among

others (see below). Additionally, it has been very effective in modifying and adding

regularisation parameters, making the best use of available memory resources, and reducing

the amount of time spent performing computational operations on the data. XGBoost may

also be used to perform operations on data that has already been given to the trained model,

according to the documentation. It allows for the use of parallel structures and automatically

fills in any missing data (Sparse Aware).

3.7 Gaussian Naïve Bayes (GNB)

When applied to both multi-class and binary (two-class) classification issues, this

classification method, which may be stated using category or binary input values, can be very

easy to comprehend. When used to multi-class classification issues, it may also be very easy

to comprehend and implement. A variation of the Gaussian Naive Bayes model, commonly

known as the Gaussian Naive Bayes model, is a model that allows for the extension of Naive

Bayes to include actual value features.

4 METHODOLOGY

The method of research is also one of the most important components of any system's

success in attaining its goal of obtaining success. The main aim of this article is to

determine which machine learning model is the best successful at forecasting the incidence

of software bugs. To accomplish this objective, a methodical methodology is necessary, as is

the development of a framework for software defect prediction that makes use of previous

data sets.

A. Data Collection

Data collection is also one of the most essential aspects of a system to pay close attention to

during the development process. This experiment and analysis are based on data that is

collected from the open source Promise repository, which has been validated and made

publicly available by the project's creators. A wide range of software metrics, such as product

metrics and process metrics, are easily available for the purpose of software bug prediction

and forecasting. During the trial, a product metrics suite called the Chidamber and Kemerer

object- oriented (CK OO) metrics suite (which is a subset of object-oriented metrics) was

utilised as the object-oriented metrics suite. Illustration of the software components that were

used in the research shows in Figure 1.

DOI : https://doi.org/10.56452/7-4-244

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

2023

Fig.1. Framework for Software Defect prediction using Historical Databases

B. Data Cleaning

It is helpful in improving the quality of data since it handles with a variety of issues such as

detecting discrepancies, removing errors, and restoring missing information. There is an issue

with data cleansing in a data warehouse, which is a key component of the extraction,

transformation, and loading (ETL) process. There are many different types of data cleaning

technologies available, but occasionally a substantial portion of the data must be cleaned

manually, which is time-consuming and difficult to produce and manage in the long run.

C. Feature Selection

The selection of features for bug prediction is an extremely essential stage since it affects the

accuracy of the forecast as well as the complexity of the model. The use of the Feature

Selection technique raises another significant point to consider: if the number of variables is

more than what is considered optimal, accuracy of the machine learning algorithm will

deteriorate as a consequence of the increased complexity of the algorithm. As a consequence,

in order to get the best possible outcomes, it is recommended to utilise a restricted feature set

wherever possible.

D. Mathematical Model

Machine learning technique regression may be used to create a prediction model, which can

then be used to make predictions. It is one of the methods that are accessible. Machine

learning models' performance was evaluated in this study using the performance metrics.

DOI : https://doi.org/10.56452/7-4-244

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

2024

5. Data Preparation

In order to attain software reusability, maintainability, and quality, it is necessary to use

machine-learning techniques. This is because machine-learning methods assist in the

identification of foul odours, ambiguities, errors, and defects inside software. The

identification of software, on the other hand, may be achieved via the use of machine learning

techniques.

Using pre-processing, you may assist in the translation of data into a format that can be read

and utilised by the classification engine. There are a number of significant advantages to pre-

processing data, including the ability to normalise numeric data and assist with filling in

missing data. In order to conduct the tests, it was necessary to rely on datasets

obtained from the PROMISE data repository, which had been gathered from actual NASA

software projects and included a variety of software modules, as well as datasets obtained

from other sources. The utilisation of publicly accessible datasets was required for the

purposes of the benchmarking procedure. Other researchers may use this technique of

benchmarking to compare their results with those of other researchers in the field. The NASA

MDP data sets were used to generate the performance evaluator matrices used in this research.

The binary character of the target variables in these data sets is shown by the fact that they

have values of 1 indicating yes and 0 indicating no. The Python programming language and

the Scikit-learn library are used in the data inspection procedure (a machine learning

framework).

Table 1: Description of NASA MDP DATSETS

DOI : https://doi.org/10.56452/7-4-244

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

2025

6. Software Testing Using Machine Learning Techniques

6.1 Testing SVM-Light

We were unable to find any issues with SVM-Light in the majority of the test scenarios that

included unexpected To the best of our knowledge, none of our testing has shown that this is

the case for the radial basis kernel in question. A machine learning researcher who is

acquainted with SVM-Light, on the other hand, claims that the implementation uses

"chunking," which implies that the optimization method operates on sections of data instead

than the whole data set. In order to obtain fast convergence to the optimum, numerical

methods and heuristics are used. However, the optimum state is not always achieved; rather,

after achieving a given degree of development, the process grinds to a stop. For example,

consider the following example of a critical area in which the implementation deviates

substantially from the specification: our investigation of "predictable" rankings produced a

number of other and noteworthy findings. A small data set was created with the assistance of

the SVM that should provide a flawless ranking. All three kernels gave appropriate ratings to

the samples. When the labels were changed in a subsequent test to make them all distinct

(i.e., just equal to the first characteristic plus one), the findings were much more intriguing.

When it came to determining the optimal ranking, the linear and radial basis kernels were

successful, but the polynomial basis kernel was unsuccessful. The noise, we reasoned, was to

blame, so we removed it, and it did, in fact, arrive at the optimum ranking position. This was

the only case in which noise in the data set precluded SVM-Light from finding the most

optimum ranking method for the given data set.

6.2 Testing MartiRank

When confronted with a larger than expected number of features, the implementation, in

contrast to the MartiRank implementation, repeatedly failed to meet the requirements

(crashed). On the other hand, negative labels were not detected by the implementation, which

instead produced erroneous results whenever a negative label was encountered. According to

theory, negative labels (such as -1 vs +1, which are commonly used in other applications)

should be permitted by default in a general-purpose ranking system.

As an added bonus, we were able to construct test scenarios that showed that alternative

interpretations of the algorithm might result in different results by carefully analysing the

algorithm and taking into account any potential ambiguity. We were particularly interested in

what would happen in the event of repeated values since MartiRank is based on sorting. We

were particularly interested in whether “stable” sorting would be employed, which would

guarantee. When we used non-stable sorting, we were unable to achieve perfect ranking

because some of the examples could be out of order. We were able to obtain perfect ranking

using a non-stable sort, but not certainly perfect ranking due to the possibility that the

instances were out of order in the first place. Upon further investigation, we discovered that

the sorting process was not, in fact, consistent.

DOI : https://doi.org/10.56452/7-4-244

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

2026

6.3 Regression testing

The results of our tests enabled us to create an array of data sets, which we may then use for

regression testing purposes in the future. This was a desirable side effect of our tests, and

we were happy to have it. The implementation of the MartiRank method is still in the early

stages of development, but our data sets have shown to be very useful in identifying newly

found faults in the system. A good example is the restructuring of some repetitious code and

the placement of that code into a new subroutine, which showed that the models generated by

the new code were different from those produced by the previous version of code.

7. Results

This section covers the outcomes of the various machine learning methods for defect

prediction when applied to a variety of datasets. The training was carried out on the basis of a

10-fold cross validation.

Fig 2: Accuracy Chart of Different algorithms

According to the Accuracy chart (Figure 2), it is immediately apparent that the proposed

stacking classifier (STC) outperformed all of the other algorithms evaluated in this study

significantly. The ensemble classifiers outperformed other supervised and unsupervised

learning techniques in terms of accuracy when evaluated in terms of accuracy. In terms of

classification technique performance, QDA beat the competition, but in terms of clustering

algorithm performance, GMM topped the competition.

Conclusion

A rise in the number of software-based systems has occurred in recent years despite the fact

that they must be thoroughly tested prior to being provided to end users. Software quality

measures include ISO standards, CMM, and software testing, all of which may be used to

enhance the overall quality of the product. Every passing day sees a rise in the need for

DOI : https://doi.org/10.56452/7-4-244

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

2027

software testing, and software defect prediction may be able to assist improve the efficiency

of software testing by predicting potential defects. A specific aim of this study was to

investigate different software defect prediction techniques, which were recognised as the

ensemble model, clustering models (for clustering models), and classification models (for

classification models). The findings of this study show that stacking multiple classifiers may

be used to predict faults in a machine learning system.

Reference:

1. J. Tian, and M.V. Zelkowitz. Complexity measure evaluation and selection, IEEE

Transactions on Software Engineering, 21(8), 641-650, 1995.

https://doi.org/10.1109/32.403788

2. S. Puranik, P. Deshpande, and K. Chandrasekaran, “A Novel Machine Learning Approach for

Bug Prediction,” Procedia - Procedia Comput. Sci., vol. 93, no.September, pp. 924–930, 2016.

“doi:10.1016/j.procs.2016.07.271”.

3. R.B. Jadhav, S.D. Joshi, U.G. Thorat, and A.S. Joshi. A Software Defect Learning and Analysis

Utilizing Regression Method for Quality Software Development, International Journal of

Advanced Trends in Computer Science and Engineering, 8(4), 1275 - 1282, 2019.

https://doi.org/10.30534/ijatcse/2019/38842019

4. K.S. Kavya, and Y. Prasanth. An Ensemble DeepBoost Classifier for Software Defect Prediction,

International Journal of Advanced Trends in Computer Science and Engineering, 9(2), 2021 –

2028, 2020. https://doi.org/10.30534/ijatcse/2020/173922020

5. M. Dhiauddin, M. Suffian, and S. Ibrahim, “A Prediction Model for System Testing Defects

using Regression Analysis,” Int. J. Soft Comput. Softw. Eng., vol. 2, no. 7,

pp. 55–68, 2012. “doi:10.7321/jscse.v2.n7.6”

6. M.K. Albzeirat, M.I. Hussain, R. Ahmad, F.M. Al-Saraireh, and I. Ahmad. A novel

mathematical logic for improvement using lean manufacturing practices. Journal of Advanced

Manufacturing Systems, 17(03), 391-413, 2018.

7. S. Aleem, L.F. Capretz, and F. Ahmed. Benchmarking machine learning technologies for

software defect detection. International Journal of Software Engineering & Applications

(IJSEA), 6(3), pp. 11-23, 2015.

8. E. Erturk, and E.A. Sezer. A comparison of some soft computing methods for software fault

prediction. Expert systems with applications, 42(4), 1872-1879, 2015.

https://doi.org/10.1016/j.eswa.2014.10.025

9. P. A. Selvaraj and P. Thangaraj, “Support Vector Machine for Software Defect Prediction,” Int.

J. Eng. Technol. Res., vol. 1, no. 2, pp. 68–76, 2013.

10. M.K. Albzeirat, M.I. Hussain, R. Ahmad, F.M. Al-Saraireh, A. Salahuddin, and N. Bin- Abdun.

Applications of Nano-Fluid in Nuclear Power Plants within a Future Vision. International

Journal of Applied Engineering Research, 13(7), 5528-5533, 2018.

11. F. E. H. Tay and C. Lijuan, “Application of Support Vector Machines in Financial Time Series

Forecasting,” Omega, vol. 29, no. 2001, pp. 309–317, 2001. “doi: 10.1016/s0305-

0483(01)00026-3”

12. M. Singh, and D.S. Salaria. Software defect prediction tool based on neural network.

International Journal of Computer Applications, 70(22), 2013.

https://doi.org/10.1109/32.403788
https://doi.org/10.30534/ijatcse/2019/38842019
https://doi.org/10.30534/ijatcse/2020/173922020
https://doi.org/10.1016/j.eswa.2014.10.025

