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Abstract: 

Machine learning has the capacity of collecting raw data from a repository and converting it 

into a form that can be used for calculation and prediction of software bugs. It is usually 

preferable to identify a software problem as soon as possible in order to minimise the amount 

of time and money spent on fixing it. It is necessary to apply the wrapper and filter technique 

in order to discover the most optimum software metrics. The primary goal of this article is to 

identify the most effective model for predicting software bugs. The goal of certain machine 

learning applications is to learn characteristics of data sets in situations when the right 

solutions are not previously known by human users. Because there is no trustworthy test 

oracle for machine learning software, it is difficult to test such software. 

Key words: Machine Learning, classification, clustering, Support Vector Machine, Software 

Defect Prediction. 

1. Introduction 

Machine learning methods are a crucial field of computer science that may be used to predict 

the development of software problems. They are becoming more popular. A software bug is 

one of the most severe issues that may occur in the computer industry and is one of the most 

difficult to detect. It is usually desirable to have the fewest amounts of software defects and 

for the software system to attain the greatest degree of accuracy feasible. This is especially 

true for mission-critical software systems. As an example of machine learning models, the 

regression technique is used in this article to model Linear Regression. Other machine 

learning models discussed in this article include the Random Forest model, the Neural 

Network model, the Support Vector Machine model, the Decision Tree model, and the 

Decision Stump model. More specifically, the goal of this research is to identify the most 

effective machine learning model that may be used to forecast software bug occurrences. In 

this article, we suggest a technique of software testing that is meant to address this problem in 

some way.  

As software's dependence on and complexity grows, the need for maintainable, high-quality, 

low-cost software grows in parallel with these advancements as well. A software defect 

prediction system, on the other hand, is needed in order to reduce the amount of maintenance 

required in software operation while simultaneously improving the quality of software in 
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real- world situations. Putting in place an early detection system will enable developers to 

provide maintainable software in a shorter period of time since it will allow for the rapid 

correction of any issues that are discovered. There has been a significant increase in interest 

in the field of software engineering, particularly in the area of software defect prediction, 

during the last 30 years. Different performance comparison metrics, such as correlation, R 

Squared, mean square error (MSE), and accuracy, were calculated for a variety of machine 

learning models, and the results were then compared to one another. As for the rest of the 

paper, it was organised in the following way: It is the purpose of this article to discuss how to 

ensure the dependability of machine learning (ML) systems, with a special focus on software 

testing. In particular, traditional software engineering processes and tools do not easily 

translate to machine learning applicationsIt is a general phrase that is used to describe a 

wide group of software systems that do not have access to a trustworthy test oracle that can 

be used to test them. It is possible to show theoretically that ML algorithms of the highest 

quality exist, but this does not guarantee that an application will correctly implement or use 

the technique; as a result, software testing is needed [2]. 

The three elements of our approach for producing test cases are as follows: analysis of the 

problem domain and related data sets; analysis of the algorithm as stated; and analysis of 

implementation runtime decisions during the implementation phase.  

2. Machine Learning Models 

Machine learning is a subfield of Artificial Intelligence that is concerned with the 

development of a system that will learn from and make predictions based on data collected. 

As every company and individual tries to develop an intelligent application, machine learning 

has climbed to the top of the list of the most popular subjects on the internet. Unsupervised 

learning and supervised learning are the two kinds of machine learning that may be carried 

out at the same time. When data is analysed without supervision, unsupervised learning may 

be used to find hidden patterns in it. Clustering is a technique for learning without the need of 

a supervisor. The technique of supervised learning is used when it is required to train a model 

in order to make a prediction. This research was able to predict the optimum model for 

software bug prediction using regression methods applied to machine learning models, which 

was subsequently utilised in a later paper. This research made use of six different machine 

learning models [6]. 

A. Linear Regression 

Predictive analysis is often carried out with the use of linear regression, which is a statistical 

method. To identify the relationship between the response variable (dependent variable) and 

one or more of the explanatory factors (independent variables), this model is employed 

(independent variable). 

B. Decision Tree 

If you're looking for predictive modelling methods, the decision tree is one of the supervised 

learning techniques that may be used in classification and regression. As an added benefit of 
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using decision trees, they are capable of coping with datasets that include errors and missing 

information. On the downside, decision trees are too sensitive to the data in the training set, 

which may include irrelevant or noisy information. 

C. Support Vector Machine 

Vector machine learning makes use of supervised computer learning methods such as 

classification, regression, and outliers detection to assist with the learning process. SVM 

works well when data sets are small, since the amount of time required for training is 

decreased, resulting in faster results. As data sets become less noisy, they become more 

appropriate models for the problems they are presented with. Statistical learning machines 

(SVMs) are used in a number of applications, including face identification, optical character 

recognition (OCR), spam categorization, financial time series forecasting, and other areas. 

D. Neural Network 

In order to establish the connection between input and output, to predict software problems 

and to detect patterns, it is feasible to use neural networks. 

E. Decision Stump 

Choice Stump is a machine learning model that mimics the process of making a decision in a 

given situation. The Decision Stump may be conceived of as a one-level decision tree with a 

single decision point. When the feature selected has significant values, the choice process 

generally results in the best outcome or results in the decision process continuing to develop. 

3. Background 

The creation of an artificial intelligence (AI) application that contains dynamic 

information about the present gadgets is something we're working on as a group. Because 

every device will ultimately fail, ("will fail" vs. "will not fail") is inadequate because, given 

enough time. While the prototype application generates rankings utilising both MartiRank 

and SVM algorithms, it is more than just a piece of academic research since it has real-world 

implications rather than being simply academic in nature. 

3.1 Machine learning fundamentals 

Supervisory machine learning is often split into two phases, which are as follows: Each 

example includes a number of attribute values as well as a single label, all of which are 

examined in the first phase of the investigation (known as the learning phase). After 

analysing a collection of training data that includes instances with multiple attribute values as 

well as a single label, the first phase (also known as the learning phase) is performed. In the 

end, this study produced a model that attempted to make broad generalisations about the 

connection between the qualities and the label. This is done in the second phase, when the 

model is applied to a fresh, previously unknown data set (the testing data), where the labels 

are not known beforehand (this is known as the validation data). 
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3.2 SVM and MartiRank 

SVM is a machine learning method that belongs to the “linear classifier” family of 

algorithms. It is charged with finding a (linear) hyperplane that differentiates samples from 

different classes based on their characteristics. Because each example from the training data 

includes K characteristics, the SVM treats each example from the training data as a vector 

with K dimensions (and attempts to separate the instances using a hyperplane with K-1 

dimensions) during the learning phase. The SVM's "kernel" influences the kind of hyperplane 

that is generated; in this article, we look at the linear, polynomial, and radial basis kernels, 

among other things. 

3.3 Maximum Voting Classifier (MVC) 

As a result of using the maximum voting technique, a large number of classifiers may be used 

to make predictions and evaluate the data that they produce in real time. The final prediction 

is based on which candidate got the most number of votes in the previous election (more 

than half). If you want to enhance the accuracy of this technique, you may combine multiple 

classifiers together. 

3.4 Extra Tree Classifier (ET) 

The numerical input figures used in this technique are used to further randomise a tree 

construction. The technique would transition. There is no rhyme or reason to the method by 

which the cut of point is selected. In particular, this approach is ideally suited to situations 

where there are a high number of numerical features that are subject to fluctuations. The 

method, which employs smoothing to enhance accuracy while also minimising any 

computational problems associated with finding the location of random forests and 

conventional trees, has been shown to be successful. 

3.5 Passive Agressive Classifier (PAC) 

If the model falls into the proper kind of categorization classification, it is kept under the 

Passive classification. All incorrect classifications should be rectified in aggressive mode in 

order to account for the misclassified case that was shown. While it is true that updates are 

hampered by a lack of sufficient information, it is also true that a better model will aid in the 

correction of any mistakes that occurred during the previous time period. 

3.6 Xgboost 

A gradient-boosted decision tree method created by the Distributed Machine Learning 

Community is known as Gboost (DMLC). When used in combination with gradient-boosted 

decision trees, it is well-known for delivering increased performance and speed as a result. 

Tianqi Chen developed and used Xgboost for the first time in the year (1995), and it has 

shown to be a very successful way of giving a boost to computers since its inception. This 

project has gone through a number of revisions under the supervision of many different 

developers. Methods such as treestreme and xGBoost are used to help tree boosting 

approaches in making full use of all available hardware and memory resources. This allows 
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for their deployment in computing settings, as well as for the modification and improvement 

of the algorithm. Gradient boosting may be accomplished in XGBoost via the use of three 

distinct techniques: stochastic boosting, regularised boosting, and gradient boosting, among 

others (see below). Additionally, it has been very effective in modifying and adding 

regularisation parameters, making the best use of available memory resources, and reducing 

the amount of time spent performing computational operations on the data. XGBoost may 

also be used to perform operations on data that has already been given to the trained model, 

according to the documentation. It allows for the use of parallel structures and automatically 

fills in any missing data (Sparse Aware). 

3.7 Gaussian Naïve Bayes (GNB) 

When applied to both multi-class and binary (two-class) classification issues, this 

classification method, which may be stated using category or binary input values, can be very 

easy to comprehend. When used to multi-class classification issues, it may also be very easy 

to comprehend and implement. A variation of the Gaussian Naive Bayes model, commonly 

known as the Gaussian Naive Bayes model, is a model that allows for the extension of Naive 

Bayes to include actual value features. 

4 METHODOLOGY 

The method of research is also one of the most important components of any system's 

success in attaining its goal of obtaining success. The main aim of this article is to 

determine which machine learning model is the best successful at forecasting the incidence 

of software bugs. To accomplish this objective, a methodical methodology is necessary, as is 

the development of a framework for software defect prediction that makes use of previous 

data sets. 

A. Data Collection 

Data collection is also one of the most essential aspects of a system to pay close attention to 

during the development process. This experiment and analysis are based on data that is 

collected from the open source Promise repository, which has been validated and made 

publicly available by the project's creators. A wide range of software metrics, such as product 

metrics and process metrics, are easily available for the purpose of software bug prediction 

and forecasting. During the trial, a product metrics suite called the Chidamber and Kemerer 

object- oriented (CK OO) metrics suite (which is a subset of object-oriented metrics) was 

utilised as the object-oriented metrics suite. Illustration of the software components that were 

used in the research shows in Figure 1. 



DOI : https://doi.org/10.56452/7-4-244 

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022) 

International Journal of Mechanical Engineering 

2023 

 

Fig.1. Framework for Software Defect prediction using Historical Databases 

B. Data Cleaning 

It is helpful in improving the quality of data since it handles with a variety of issues such as 

detecting discrepancies, removing errors, and restoring missing information. There is an issue 

with data cleansing in a data warehouse, which is a key component of the extraction, 

transformation, and loading (ETL) process. There are many different types of data cleaning 

technologies available, but occasionally a substantial portion of the data must be cleaned 

manually, which is time-consuming and difficult to produce and manage in the long run. 

 

C. Feature Selection 

The selection of features for bug prediction is an extremely essential stage since it affects the 

accuracy of the forecast as well as the complexity of the model. The use of the Feature 

Selection technique raises another significant point to consider: if the number of variables is 

more than what is considered optimal, accuracy of the machine learning algorithm will 

deteriorate as a consequence of the increased complexity of the algorithm. As a consequence, 

in order to get the best possible outcomes, it is recommended to utilise a restricted feature set 

wherever possible. 

D. Mathematical Model 

Machine learning technique regression may be used to create a prediction model, which can 

then be used to make predictions. It is one of the methods that are accessible. Machine 

learning models' performance was evaluated in this study using the performance metrics. 
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5. Data Preparation 

In order to attain software reusability, maintainability, and quality, it is necessary to use 

machine-learning techniques. This is because machine-learning methods assist in the 

identification of foul odours, ambiguities, errors, and defects inside software. The 

identification of software, on the other hand, may be achieved via the use of machine learning 

techniques. 

Using pre-processing, you may assist in the translation of data into a format that can be read 

and utilised by the classification engine. There are a number of significant advantages to pre- 

processing data, including the ability to normalise numeric data and assist with filling in 

missing data. In order to conduct the tests, it was necessary to rely on datasets 

obtained from the PROMISE data repository, which had been gathered from actual NASA 

software projects and included a variety of software modules, as well as datasets obtained 

from other sources. The utilisation of publicly accessible datasets was required for the 

purposes of the benchmarking procedure. Other researchers may use this technique of 

benchmarking to compare their results with those of other researchers in the field. The NASA 

MDP data sets were used to generate the performance evaluator matrices used in this research. 

The binary character of the target variables in these data sets is shown by the fact that they 

have values of 1 indicating yes and 0 indicating no. The Python programming language and 

the Scikit-learn library are used in the data inspection procedure (a machine learning 

framework). 

Table 1: Description of NASA MDP DATSETS 
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6. Software Testing Using Machine Learning Techniques 

 

6.1 Testing SVM-Light 

We were unable to find any issues with SVM-Light in the majority of the test scenarios that 

included unexpected To the best of our knowledge, none of our testing has shown that this is 

the case for the radial basis kernel in question. A machine learning researcher who is 

acquainted with SVM-Light, on the other hand, claims that the implementation uses 

"chunking," which implies that the optimization method operates on sections of data instead 

than the whole data set. In order to obtain fast convergence to the optimum, numerical 

methods and heuristics are used. However, the optimum state is not always achieved; rather, 

after achieving a given degree of development, the process grinds to a stop. For example, 

consider the following example of a critical area in which the implementation deviates 

substantially from the specification: our investigation of "predictable" rankings produced a 

number of other and noteworthy findings. A small data set was created with the assistance of 

the SVM that should provide a flawless ranking. All three kernels gave appropriate ratings to 

the samples. When the labels were changed in a subsequent test to make them all distinct 

(i.e., just equal to the first characteristic plus one), the findings were much more intriguing. 

When it came to determining the optimal ranking, the linear and radial basis kernels were 

successful, but the polynomial basis kernel was unsuccessful. The noise, we reasoned, was to 

blame, so we removed it, and it did, in fact, arrive at the optimum ranking position. This was 

the only case in which noise in the data set precluded SVM-Light from finding the most 

optimum ranking method for the given data set. 

 

6.2 Testing MartiRank 

When confronted with a larger than expected number of features, the implementation, in 

contrast to the MartiRank implementation, repeatedly failed to meet the requirements 

(crashed). On the other hand, negative labels were not detected by the implementation, which 

instead produced erroneous results whenever a negative label was encountered. According to 

theory, negative labels (such as -1 vs +1, which are commonly used in other applications) 

should be permitted by default in a general-purpose ranking system. 

As an added bonus, we were able to construct test scenarios that showed that alternative 

interpretations of the algorithm might result in different results by carefully analysing the 

algorithm and taking into account any potential ambiguity. We were particularly interested in 

what would happen in the event of repeated values since MartiRank is based on sorting. We 

were particularly interested in whether “stable” sorting would be employed, which would 

guarantee. When we used non-stable sorting, we were unable to achieve perfect ranking 

because some of the examples could be out of order. We were able to obtain perfect ranking 

using a non-stable sort, but not certainly perfect ranking due to the possibility that the 

instances were out of order in the first place. Upon further investigation, we discovered that 

the sorting process was not, in fact, consistent. 
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6.3 Regression testing 

The results of our tests enabled us to create an array of data sets, which we may then use for 

regression testing purposes in the future. This was a desirable side effect of our tests, and 

we were happy to have it. The implementation of the MartiRank method is still in the early 

stages of development, but our data sets have shown to be very useful in identifying newly 

found faults in the system. A good example is the restructuring of some repetitious code and 

the placement of that code into a new subroutine, which showed that the models generated by 

the new code were different from those produced by the previous version of code. 

7. Results 

This section covers the outcomes of the various machine learning methods for defect 

prediction when applied to a variety of datasets. The training was carried out on the basis of a 

10-fold cross validation. 

 

 
 

Fig 2: Accuracy Chart of Different algorithms 

According to the Accuracy chart (Figure 2), it is immediately apparent that the proposed 

stacking classifier (STC) outperformed all of the other algorithms evaluated in this study 

significantly. The ensemble classifiers outperformed other supervised and unsupervised 

learning techniques in terms of accuracy when evaluated in terms of accuracy. In terms of 

classification technique performance, QDA beat the competition, but in terms of clustering 

algorithm performance, GMM topped the competition.  

Conclusion 

A rise in the number of software-based systems has occurred in recent years despite the fact 

that they must be thoroughly tested prior to being provided to end users. Software quality 

measures include ISO standards, CMM, and software testing, all of which may be used to 

enhance the overall quality of the product. Every passing day sees a rise in the need for 
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software testing, and software defect prediction may be able to assist improve the efficiency 

of software testing by predicting potential defects. A specific aim of this study was to 

investigate different software defect prediction techniques, which were recognised as the 

ensemble model, clustering models (for clustering models), and classification models (for 

classification models). The findings of this study show that stacking multiple classifiers may 

be used to predict faults in a machine learning system.  
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