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Abstract  

Bladder cancer is one of the supreme communal cancers universally and available analytical models and techniques are derisory to 

know the performance of the diseases. In Statistical modeling, Model Selection method is one of the important statistical 

processes. This study focusing on Cox model which is characterized into two criterion model choice such as Schwartz Akaike 

criterion and Robust Akaike Criterion. The criterions are based on a smooth modification of the partial likelihood function. 

Asymptotic results are presented in this study and also Monte Carlo study has been obtained to shows the finite sample behavior 

of the procedure under divergences from the Cox model.  

Keywords: Model Selection, Akaike’s Criterion, Schwarz Information Criterion, Cox Model, Monte Carlo Methods, Partial 
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INTRODUCTION: 

Bladder cancer is one of the most recurrently happening human cancers, emergent through two tracks such as papillary and non

 -papillary that analogous to clinically different forms of the disease. Most bladder cancers are chemically tempted, with 

tobacco smoking being leading the risk factor. The occurrences of the bladder cancer more in the European countries and 

specifically in Italy and Spain identified a greater number of bladder cancer cases. Bladder cancer is the cancer which grows and 

develops in the bladder lining. In some of the cases, the tumor spreads into the bladder muscle. Bladder cancer is the fourth most 

common cancer in men and the eighth most common in women. The prevalence rate is about four times greater among men than 

women.  

Bladder cancer performances is based on the stages and risk of the cancer recur further. Bladder cancer stagging is based upon the 

how far it is infiltrated into the tissues of the bladder and the cancer involves lymph nodes near the bladder, and whether the 

cancer has spreads beyond the bladder to the other organs. The verdict stage is the most important predictive factor for invasive 

bladder cancer, while grade is the most important predictive factor for non-invasive bladder cancer. Based on the stage, most of 

the studies uses the abridged cataloguing based on localized, regional, and distant. When reconnoitering survival outcomes for 

patients with bladder cancer, most of the studies rely on conservative statistical methods such as proportional hazards models. In 

this paper, gene expression and clinical data related to bladder cancer were obtained from TCGA and GEO databases and Cox 

model used for analyses the data. These analytical models such as Schwarz, Akaike and Bayesian information criterion based on 

the partial likelihood function are established to study about the bladder cancer.  The robust models are used to predict the 

effectiveness of the patients who all are taking individualized treatments. 

Different number of procedures were projected for the estimation in the Cox model (Cox, 1972) through the functional approach. 

The Cox regression model (Cox, 1972) appropriate to study how the unemployment time influences the socio-economic factors 

and also described the distribution of the factors. The model choice in regression models explores the explanatory variables using 

the number of process and attains the results in the final step of the processes. The Schwarz information criterion (Schwarz, 1978) 

is the most superior tools for model selection of data analysis. It is based on minimization of ,log)(5.0)ˆ,(log njdjL j  

where L(·) is the likelihood function, j indexes sub-models, 
j̂ is the maximum likelihood estimator of θ in the jth model, d(j) is 

the dimension of the model while n is the number of independent observations. The SIC more appropriate when the inference 

based on the objective functions in robust estimation [10]. In [4] the modification of partial likelihood function has been 

introduced in order to achieve robustness of estimation procedure. These estimation procedures are more useful to describes about 

the Cox model. 

Cox models are developed conventional statistical approach which resulted with efficient parametric (or semi-parametric) 

procedures with its robust counterparts. There are models, like the normal one, where those robust procedures can be routinely 

provided. Due to complex structure of the partial likelihood function of Cox models, the estimator which is evaluated using the 

model is efficient. First fix basic notations to explain the merits of robust estimation. Denote by Fn the empirical distribution 

function of the random sample (T1, C1, Z1). . . (Tn, Cn, Zn), where T, C and Z are, respectively, time, censoring and covariate 

variables. Censoring and time are independent, given the value of the covariates–explanatory variables. Under the Cox model 
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equivalent to the partial likelihood score function equation 
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When the function A weight function is equal to 1. 

While the first-order equation (1) involves explicitly the unobservable empirical Cumulative Distribution Function (CDF) Fn, 

specific form of integrated functions ensures that the left-hand side is computable under the observed sample. Solving the 

equation with respect to β, if the solution exists, is equivalent to maximization of the following modified partial likelihood: 
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The logarithm of the modified likelihood, which is concave with respect to β, can be written 

conveniently as 
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. . . (3) 

To assure the robustness and proper asymptotic behaviour of the new estimator of weights and the estimators should be smooth 

and down-weight outlying observations. This methodology has been pointed out in [3] that observations with excessive values

iZ

ieT
'

, where β is the true parameter value, are most influential in the inference process. More formally, solutions to (1), when 

weights are 1, may converge to arbitrary values with respect to sequences of distributions approaching, in sup norm for cdf, a Cox 

model distribution. It was also argued there, that an important source of instability is in violation of the dependence structure 

between T and Z thinkable as ‘erroneous’ data in practical situations. Therefore, a natural choice for the weights A was in down-

weighting the largest values of
ZeT '~ 

. [4] has shown that it is possible to choose families of A functions so that the estimator 

functional becomes uniformly Frechet differentiable at the Cox model distributions. The fact guarantees robustness of the implied 

estimators in the usual sense, the uniform normal approximation of the estimator’s distribution with respect to small 

(infinitesimal) non-parametric neighborhoods of the model law, as well the reliability in estimator’s variance assessment. 

 

MONTE CARLO STUDY 

Computations of robust estimator, it is an essential one for the robust model selection method, are based on the following steps 

(compare [4]): 

1. Find the partial likelihood estimator ̂  

2. Evaluate 0.9 (or 0.95) empirical quantile for the sample )'ˆ(exp
~

,...),'ˆexp(
~

11 nn ZTZT  and denote it by M, 

3. Maximize (2) for the weights 
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4. Estimate the cumulated hazard using [8] robustified version of Breslow’s estimator 
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5. Compute, as in point 2, the empirical quantile M for the sample 
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and go to 3 till stability is achieved. 
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Robust estimation is the method which is follows the strong differentiability property of the estimation or functional. Specific 

choice of the family of weight functions is based on the fact (see [3], [4]) that stability in the partial likelihood estimation comes 

with observations which are iZ

i eT 0'
~ 

 excessive. Weights given above reduce this influence. Notice that the random variable

Z
eT 0')(


 is standard exponential under the Cox model, while it is reasonable to expect 
Z

eT 0'  be approximately exponential 

when (t) is ‘nearly’ linear in T. Adaptively, of the method based on weights given in point 3 of the algorithm was shown in [5]. 

Extension to weights based on 
Z

eT 0'
ˆ

)(ˆ 
 is natural (not yet formally supported) and shown, by the Monte Carlo experiments, to 

be a little more efficient. 

The weights alteration is regularly attained after 3 to 4 iterations.  The weight functions  A (t, z) given above does not satisfy all 

required formal regularity conditions. The smoothed version multiplied by selective function A0 has given virtually unchanged 

results for mild in covariates contaminations. To meet all the formal assumptions, one has to multiply the above smoothed weights 

by a smooth compact support function of z excluding observations with improbable covariates the step usually accomplished by 

proper scanning of data. Alternatives for the weights were also considered, for instance. 

  )}/()({exp, ' MetztA z  . . . (6) 

Where, α is a scaling factor. They showed comparable behaviour.J 

 

OBJECTIVES OF THE STUDY: 

 To find the best diagnostic the bladder cancer using Schewarz, Akaike’s and Bayesian Criterion. 

 To evaluate the concert of the models using robust estimators. 

 To estimate the robust estimators using Monte Carlo Study. 

 

DATA SET AND METHODOLOGY 

In this segment, the real-life data has been analyzed which is taken from the National Cancer Institute Surveillance Epidemiology 

and End Results (SEER) database covers data. The data consists of 18 population-based registries and represents approximately 

28% of the population [12]. The SEER case citation session was used to identify patients from the SEER 18 (November 2018 

submission) database. In this study, the explanatory variables are age, sex and Stage I, Stage II, Stage III, Stage IV and No stage 

on each specific type of cancer affects a particular type of cell present in the blood. A repetitive blood test detecting the 

occurrence of these type of cancers as early as possible. The statistical analysis might carry out for the given data. The model 

selection and estimation are presented in the consequent tables are supposed to determines the excessive consideration of the 

standard approach on model selection. 

The first column of each table contains variable names. The second one gives MLE and columns under the heading ‘SE’ give 

estimated standard errors.  

Table.1. Comparison of model selections : Schwarz, Akaike information criterion and Bayesian information criterion based on the 

partial likelihood for the bladder cancer for the uncontaminated data  (robust criterion corresponding to 0.9 Quantile). 

Regressors MLE S.E. AIC S.E BIC S.E SIC 

Sex 2.965 0.328      

Age 1.156 0.421 123.456 0.032 125.3291 0.041 125.3291 

Stage I 1.762 0.314 121.765 0.292 124.651 0.256 138.808 

Stage II 1.888 0.287 119.245 0.354 123.045 0.312 124.584 

Stage III 1.984 0.396 120.621 0.354 124.003 0.308 134.467 

Stage IV 1.879 0.386 121.002 0.975 125.513 0.751 130.943 

No Stage  1.751 0.264 118.64 0.217 123.107 0.213 139.852 
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Table.2. Comparison of model selection: Schwarz, Akaike information criterion and Bayesian information criterion based on the 

partial likelihood for the bladder cancer for the contaminated data (robust criterion corresponding to 0.9 Quantile). 

Regressors MLE S.E. AIC S.E BIC S.E SIC 

Sex 2.812 0.488      

Age 1.261 0.127 123.862 0.184 126.915 0.141 16.917 

Stage I 1.818 0.347 122.007 0.327 125.581 0.296 139.014 

Stage II 1.907 0.297 119.455 0.397 124.475 0.362 125.842 

Stage III 1.991 0.412 120.981 0.384 124.984 0.387 134.977 

Stage IV 1.979 0.401 121.902 0.981 126.103 0.793 131.023 

No Stage 1.723 0.316 119.514 0.305 124.707 0.259 138.522 

                In Table 1, Schwarz, Akaike and Bayesian criterion are compared with respective Standard Error. The data analyzed and 

compared partial likelihood estimation with different model selections. In Table 2, shows the effect of contamination data which is 

based on the robust measures. After many repetitions of robust model selection, the stability has been attained and also the model 

selection based on Schwarz method of an uncontaminated to contaminated data. The robust Akaike method remain unchanged 

virtually for both the data sets. 

 

CONCLUSION: 

 The survival rate of the patients who are having bladder cancer may vary momentously of various stages among both non-

invasive and invasive cases. The non-invasive cancers are more highly affectable one among human when compared with invasive 

cases. Moreover, those factors are represented independently. In survival data, sex has no association with any other factors and 

Age and stage are significant. This can be used to predict patients’ survival outcomes. In this study, partial likelihood method and 

robust method are used for model selection. The robust model selection given the highest stability for the given data set using the 

Schwarz criterion. The Robust methods are the best methods to evaluate the successful rates of bladder cancer treatments with the 

robust estimators. The accuracy of predictions values based on robust models may verify in further studies and also studies the 

clinical applications of the individualized treatment of bladder cancer. 
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