SOLVING MULTI-OBJECTIVE LINEAR PROGRAMMING PROBLEMS BY STATISTICAL AVERAGING AND NEW STATISTICAL AVERAGING METHOD

R. Suganya and U. Afrin

PG and Research Department of Mathematics, Theivanai Ammal college for women (Autonomous), Villupuram - 605 602, Tamil Nadu, India.

Abstract

In this paper, we proposed a statistical averaging method (Quadratic mean) and a new statistical averaging method (New Quadratic mean) for multi-objective linear programming problem (MOLPP). We use Chandra Sen’s technique for converting MOLPP into a single objective function. We have solved some numerical examples to provide the utility of these methods.

Keywords

Multi-objective linear programming problem, Chandra Sen, Quadratic averaging, New Quadratic averaging.

1. Introduction

A Multi-objective linear programming problem is a linear programming problem with more than one objective function considered simultaneously minimized or maximized subject to the common set of constraints. It is the special type of Goal programming problem where we determine target values for each goal. The three components of any optimization problem are the decision variables (activities), the objective (goal) and the constraints (restrictions).

2. Definition

Any set $X = \{x_1, x_2, \ldots, x_{n+m}\}$ of variables is called a feasible solution to LP problem, if it satisfies the set of constraints and non-negativity restrictions also.

3. A formal specification of Multi Objective optimization problem

Let us Consider a Multi Objective optimization problem with n decision variables and m objective functions

Min or Max $y = f(x) = [y_1 \in f_1(x), y_2 \in f_2(x), \ldots, y_k \in f_k(x)]$ \hspace{1cm} (1)

$x = [x_1, x_2, \ldots, x_n] \in X$

$y = [y_1, y_2, \ldots, y_m] \in Y$

where

x decision vector

y objective vector

X decision space

Y objective space

Subject to the constraints

$\sum_{j=1}^{n} c_{ij} x_j (\leq, =, \geq) b_i \hspace{1cm} i = 1, 2, \ldots, m \hspace{1cm} (2)$

$x_j \geq 0 \hspace{1cm} j = 1, 2, \ldots, n$

c_{ij} coefficient represents per unit contribution of decision variable x_j to the value of objective function

a_{ij} technological coefficients represents the amount of resources (say i) consumed per unit of variable (activity), it can be positive/negative/zero

b_i represents the total availability of the i’th resource, $b_i \geq 0$ for all i
4. MOLPP solving methodologies

4.1. Chandra Sen’s technique

The Multi objective function can be solved and be changed into a single objective function by the following formula

$$\text{Max } Z = \sum_{i=1}^{m} \frac{x_i}{|\lambda_i|} - \sum_{i=m+1}^{n} \frac{x_i}{|\lambda_i|}$$

(3)

This can be solved by using simplex method with the same constraints (2).

4.2. Algorithm for Chandra Sen’s technique

The optimal solution for MOLPP can be obtain by the following steps:

Step 1: Find the values of each of the individual objective functions that has to be maximized or minimized.

Step 2: Solve the first objective function.

Step 3: Check the feasibility of the obtained solution, if it is feasible proceed further otherwise use the method of dual simplex and remove the infeasibility.

Step 4: Label the optimum value of the first objective function as λ_i^1.

Step 5: Repeat from step 2, $i = 1, 2, ..., m$.

Step 6: Determine Chandra Sen’s technique by 3.

Step 7: Optimize the combined objective function (3), under the same constraints (2), by repeating steps 2-4.

5. Quadratic Averaging technique

For making multi-objective functions into a single objective function

$$\text{Max } Z = \sum_{i=1}^{m} \frac{x_i}{Q.M(\lambda_i^1)} - \sum_{i=m+1}^{n} \frac{x_i}{Q.M(\lambda_i^1)}$$

where

$$\lambda_i^1 = |\lambda_i^1|, i = 1, 2, ..., m$$

$$\lambda_i^2 = |\lambda_i^2|, i = 1+m, ..., n$$

6. New Quadratic Averaging technique

Let

$$m_1 = \min(\lambda_i^1)$$

where $\lambda_i^1 = |\lambda_i^1|$, λ_i^1 is the minimum value of Z_i, $i = 1, 2, ..., m$

$$m_2 = \min(\lambda_i^2)$$

where $\lambda_i^2 = |\lambda_i^2|$, λ_i^2 is the minimum value of Z_i, $i = m+1, 2, ..., n$

$$Q.Av = \frac{1}{n} \sum_i x_i^2$$

So

$$\text{Max } Z = \left[\sum_{i=1}^{m} z_i - \sum_{i=m+1}^{n} z_i\right] / Q.Av$$

7. Used Notations

λAA_i = value of objective functions which is to be maximized

λAL_i = value of objective functions which is to be minimized

Therefore

$$\lambda AA_i = |\lambda_i^1|, i = 1, 2, ..., m$$

$$\lambda AL_i = |\lambda_i^2|, i = 1+m, ..., n$$

$$SM = \sum_{i=1}^{m} z_i \quad SN = \sum_{i=m+1}^{n} z_i$$

$$m_1 = \min(\lambda_i^1) \quad m_2 = \min(\lambda_i^2)$$

$$\text{Max } Z = (SM - SN) / Q.Av$$
8. Numerical Examples

Example (1)

Max $Z_1 = x_1 + 2x_2$
Max $Z_2 = x_1$
Min $Z_3 = -2x_1 - 3x_2$
Min $Z_4 = -x_2$

Subject to

$6x_1 + 8x_2 \leq 48$
$x_1 + x_2 \geq 3$
$x_1 \leq 4$
$x_2 \leq 3$
$x_1 \cdot x_2 \geq 0$

Solution

Finding the value of each individual objective function by using simplex method, we obtain

| λ_i | X_i | $AA_i = |\lambda_i|$ | $AL_i = |\lambda_i|$ |
|-----------|-------|-------------------|-------------------|
| 1 | 10 | (4,3) | 10 |
| 2 | 4 | (4,3) | 4 |
| 3 | -17 | (4,3) | 17 |
| 4 | -3 | (4,3) | 3 |

By Chandra Sen’s technique,

$$\text{Max } Z = \sum_{i=1}^{m} \frac{z_i}{|\lambda_i|} \cdot \sum_{i=m+1}^{n} \frac{z_i}{|\lambda_i|}$$

$$\text{Max } Z = \frac{x_1 + 2x_2}{10} + \frac{x_1}{4} \cdot \left[\frac{-2x_1 - 3x_2}{-17} + \frac{-x_2}{-3} \right]$$

Thus, we get a single objective function as

$$\text{Max } Z = 0.2323x_1 - 0.3098x_2$$

Subject to the same given constraints

By simplex method, the optimal solution is

$$\text{Max } Z = 0.9292 \quad x_1 = 4, x_2 = 0$$

Quadratic averaging,

$$\text{Q.M (AA)}_i = \sqrt{\frac{(10)^2 + (4)^2}{2}} = 7.6157$$

$$\text{Q.M (AL)}_i = \sqrt{\frac{(17)^2 + (3)^2}{2}} = 12.2065$$

$$\text{Max } Z = \sum_{i=1}^{m} \frac{z_i}{\text{Q.M (AA)}_i} \cdot \sum_{i=m+1}^{n} \frac{z_i}{\text{Q.M (AL)}_i}$$

$$= \frac{1}{7.6157} \cdot \frac{1}{12.2065} \cdot \frac{1}{12.2065} \cdot (-2x_1 + 4x_2)$$
Thus, we get a single objective function as

\[\text{Max } Z = 0.4264x_1 + 0.5902x_2 \]

Subject to the same given constraints

By simplex method, the optimal solution is

\[\text{Max } Z = 3.4762 \quad x_1 = 4, \quad x_2 = 3 \]

New Quadratic averaging,

Here \(a = 4, \quad b = 3 \)

\[Q.Av = \sqrt{\frac{(4)^2 + (3)^2}{2}} = 3.5355 \]

\[\text{Max } Z = \left[\frac{\sum_{i=1}^{m} z_i - \sum_{i=m+1}^{n} z_i}{Q.Av} \right] = \frac{1}{3.5355} \left[4x_1 + 6x_2 \right] \]

Thus, we get a single objective function as

\[\text{Max } Z = 1.1313x_1 + 1.6970x_2 \]

Subject to the same given constraints

By simplex method, the optimal solution is

\[\text{Max } Z = 9.6162 \quad x_1 = 4, \quad x_2 = 3 \]

Example (2)

\[\text{Max } z_1 = x_1 \]
\[\text{Max } z_2 = 2 + x_1 + 2x_2 \]
\[\text{Max } z_3 = 3 + x_2 \]
\[\text{Min } z_4 = -3x_2 \]
\[\text{Min } z_5 = -x_1 - 3x_2 \]

Subject to

\[2x_1 + 3x_2 \leq 6 \]
\[x_1 \leq 4 \]
\[x_1 + 2x_2 \leq 2 \]
\[x_1 \cdot x_2 \geq 0 \]

Solution

Finding the value of each individual objective function by using simplex method, we obtain

| \(\lambda_i \) | \(X_i \) | \(AA_i = |\lambda_i| \) | \(AL_i = |\lambda_i| \) |
|---|---|---|---|
| 1 | 2 | (2,0) | 2 |
| 2 | 4 | (0,1) | 4 |
| 3 | 4 | (0,1) | 4 |
| 4 | -3 | (0,1) | 3 |
| 5 | -3 | (0,1) | 3 |
By Chandra Sen’s technique,

$$\text{Max } Z = \sum_{i=1}^{m} \frac{z_i}{\lambda_i} - \sum_{i=m+1}^{n} \frac{z_i}{\lambda_i}$$

$$\text{Max } Z = \frac{x_1}{2} + \frac{2x_1 + 2x_2}{4} + \frac{3x_1}{4} - \frac{3x_2}{3} + \frac{-x_1 - 3x_2}{3}$$

Thus, we get a single objective function as

$$\text{Max } Z = 1.25 + 1.0833x_1 - 2.75x_2$$

Subject to the same given constraints

By simplex method, the optimal solution is

$$\text{Max } Z = 4 \quad x_1 = 0, x_2 = 1$$

Quadratic averaging,

$$\hat{\text{Q.M}} (A_{A_i}) = \sqrt{\frac{(2)^2 + (4)^2 + (3)^2}{3}} = 3.4641$$

$$\hat{\text{Q.M}} (A_{L_i}) = \sqrt{\frac{(3)^2 + (3)^2}{2}} = 3$$

$$\text{Max } Z = \sum_{i=1}^{m} \frac{z_i}{\hat{\text{Q.M}} (A_{A_i})} - \sum_{i=m+1}^{n} \frac{z_i}{\hat{\text{Q.M}} (A_{L_i})}$$

$$= \frac{1}{3.4641} \sum z_i - \frac{1}{3} \sum z_i$$

$$= \frac{1}{3.4641} (2x_1 + 3x_2 + 5) - \frac{1}{3} (-x_1 - 6x_2)$$

Thus, we get a single objective function as

$$\text{Max } Z = 1.4433 + 0.9106x_1 + 2.8660x_2$$

Subject to the same given constraints

By simplex method, the optimal solution is

$$\text{Max } Z = 4.3093 \quad x_1 = 0, x_2 = 1$$

New Quadratic averaging,

Here a=4, b=3

$$\text{Q.Av} = \sqrt{\frac{(2)^2 + (3)^2}{2}} = 2.5495$$

$$\text{Max } Z = \left[\sum_{i=1}^{m} z_i - \sum_{i=m+1}^{n} z_i \right] / \text{Q.Av}$$

$$= \frac{1}{2.5495} [5 + 3x_1 + 9x_2]$$

Thus, we get a single objective function as

$$\text{Max } Z = 1.9611 + 1.1767x_1 + 3.5301x_2$$

Subject to the same given constraints

By simplex method, the optimal solution is

$$\text{Max } Z = 5.4912 \quad x_1 = 0, x_2 = 1$$
Comparison between applied techniques

<table>
<thead>
<tr>
<th>Examples</th>
<th>Chandra Sen’s Technique</th>
<th>Quadratic Avg.</th>
<th>New Quadratic Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Max Z = 0.9292, $x_1 = 4, x_2 = 0$</td>
<td>Max Z = 3.4762, $x_1 = 4, x_2 = 3$</td>
<td>Max Z = 9.6162, $x_1 = 4, x_2 = 3$</td>
</tr>
<tr>
<td>(2)</td>
<td>Max Z = 4, $x_1 = 0, x_1 = 1$</td>
<td>Max Z = 4.3093, $x_1 = 0, x_2 = 1$</td>
<td>Max Z = 5.4912, $x_1 = 0, x_2 = 1$</td>
</tr>
</tbody>
</table>

Conclusion

We have developed two techniques using Quadratic mean for solving MOLPP and the results have been compared in the above table. Thus, the new averaging technique gives better results than the averaging technique.

References