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Abstract 

One-dimensional maps and their various generalized forms are considered most deliberated discrete chaotic 

maps in nonlinear dynamical systems. In spite of this, still there are some superior orbits in which the maps 

may be characterized and examined using fixed point theory. Therefore, this article deals with the modified 

Mann procedure in which the newly added parameter elaborates more interesting behavior and may have 

applications various branches of science such as information technology, control systems, transportation 

problems, cryptography, and security systems. The analytical as well as computational study, is carried out 

using graphical representations. Further, a comparison study versus modified Mann procedure, standard Mann 

procedure and Picard procedure is also demonstrated. Moreover, the maximum Lyapunov exponent property 

is also discussed to present the sensitive dependence in the orbits of modified Mann procedure. 
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1. INTRODUCTION 

The beginning of difference equations may be 

traced to the discovery of logistic map λϑ(1 − ϑ) by 

Robert May [22] in 1896. It is a one-dimensional 

nonlinear map which depends on the population 

growth rate parameter λ. Also, it is the humblest map 

amid all nontrivial nonlinear maps. During the past 

several decades there have looked many revisions of 

the logistic map. As per requirement, most of these 

studies were done numerically. Even a deep 

understanding has been yielded in [2, 11, 12] and 

[23]. The dynamical properties in nonlinear systems 

are studied using discrete difference maps in the 

various fields of science and engineering. But the 

aperiodicity behaviour plays an important role in 

science and technology such as electrical 

engineering, traffic transportation problems, ups and 

downs in share market, biology, economics, physics, 

chemistry, etc. The books on the dynamics of 

nonlinear system such as Devaney [13], Holgrem 

[17], Ausloos et. al. [7], and Alligood et. al. [1], are 

refereed for the elementary study of chaos theory. 

In the last two decades, an experimental as 

well as analytical study for one-dimensional logistic 

maps showing dynamic nature like fixed, periodic, 

aperiodic, chaos and maximum Lyapunov exponent 

using Mann procedure with applications in 

transportation problems have been examined by 



https://doi.org/10.56452/2022-20-010  
   

Copyrights @Kalahari Journals  Vol.7 No.07 (October, 2022)  
International Journal of Mechanical Engineering  

402  

Ashish et. al. [3, 5]. In 2020, Kumar et.   al.   [20] 

again worked on the dynamics of one-dimensional 

equations and examined the chaos control in 

modified one-dimensional systems using iterative 

procedure with strong convergence. If a growth rate 

parameter is modulated by using adjustable constant 

parameter of another logistic map, the complexity of 

such dynamical system is discussed by Elhadj and 

Sprott [14]. In 1987, Harikrishanan and 

Nandakumaran [15] studied that a less chaotic 

behavior of logistic map can be found by a definite 

nonlinear variation. In 2017, Sanz et. al. [26] 

determined that it depends on starting value of 

independent variable that the trajectories diverge or 

not for smaller value of logistic parameter when 

endowed with memory and fixing geometric decay 

of past iterations. Further, the developments using 

newly added parameter α on irregular behaviour of 

logistic like nonlinear difference equation in Mann 

iterative procedure is given in [8]. Afterward, for an 

accretive operator the strong convergence for the 

mappings which are non-expensive in a uniform 

Banach space was proposed by Kim and Xu [18] in 

2005, using modified Mann procedure. In 2008, by 

using asymptotically pseudo-contractions they also 

examined the convergence of the modified Mann 

system in [19]. Some assumptions were made in 

boundary point methods by He and Zhu [16] to 

introduce minimum norm stationary states in the 

non-expensive equations using modified Mann 

system. A new algorithm for modified Mann process 

in Hilbert spaces for having strong convergence by 

imposing conditions on control sequences of non-

self-Pseudo contractive mapping was examined by 

Tian and Jin [27]. For more results on the dynamics 

of one-dimensional maps one may also read [4, 6, 9, 

10, 24, 25]. 

In this article the author examines the 

dynamics of one-dimensional map through 

advanced iterative method depending on the 

parameters α, k and λ. Further, a comparative study 

versus modified Mann procedure, standard Mann 

procedure and Picard procedure is also described 

using bifurcation plotting. Section 1 gives 

elementary knowledge about the one-dimensional 

chaotic maps and chaos theory. Section 2 presents 

the major results related to dynamical behaviour of 

the logistic map using modified Mann procedure. 

Section 3 contains the comparison analysis versus 

modified Mann procedure, standard Mann and 

Picard procedure. Further, the Lyapunov exponent 

property is also discussed in the Section 4. Finally, 

Section 5 gives the overall conclusion of the paper. 

 

 

2. DYNAMICS IN MODIFIED MANN ORBIT 

Here, we determines the various properties of 

the conventional logistic map f (ϑ, λ) = λϑ(1 − ϑ), 

where λ ∈ [0, 4] and ϑ ∈ [0, 1] are studied using 

modified Mann orbit. Therefore, the modified Mann 

algorithm is described as follows: 

 

   𝜗𝑛+1 =
(1−𝛼)

𝑘
𝜗𝑛 + (1 −

(1−𝛼)

𝑘
) 𝑓(𝜗𝑛, 𝜆),      (1) 

 

where α ∈ (0, 1) and k, n are natural numbers. Then, 

for an initiator ϑ0 ∈ [0, 1], we obtain the following 

modified outcome 

 

   𝜗1 =
(1−𝛼)

𝑘
𝜗0 + (1 −

(1−𝛼)

𝑘
) 𝑓(𝜗0, 𝜆)        

     

where 𝑓(𝜗0, 𝜆) =  𝜆𝜗(1 −  𝜗).  Inductively, we 

may write as 

 

𝑀𝑂𝛼,𝜆,𝑘(𝜗𝑛) =
(1−𝛼)

𝑘
𝜗𝑛 + (1 −

(1−𝛼)

𝑘
) 𝑓(𝜗𝑛, 𝜆)  (2) 

 

where n ∈ N, ϑn ∈ [0, 1] and α ∈ (0, 1). Since the 

equation (2) depends on the control parameters α, k 

and λ, therefore, at k = 1 it reduces into standard 

Mann procedure and at α = 0, it reduces into 

conventional Picard procedure of recursion. 

Therefore, throughout the analysis of system (2) we 

take some particular values of α ∈ (0, 1) and k > 1. 

Therefore, the fixed point for the original one-

dimensional logistic map in modified Mann 

procedure is given by: 

 

 𝑀𝑂𝛼,𝜆,𝑘(𝜗∗) = 𝜗∗ 

                  
(1−𝛼)

𝑘
𝜗∗ + (1 −

(1−𝛼)

𝑘
) 𝑓(𝜗∗, 𝜆) = 𝜗∗ 

 
(1−𝛼)

𝑘
𝜗∗ + (1 −

(1−𝛼)

𝑘
) 𝜆𝜗∗(1 − 𝜗∗) − 𝜗∗ = 0  

  
(1−𝛼)

𝑘
𝜗∗ − 𝜗∗ + (1 −

(1−𝛼)

𝑘
) 𝜆𝜗∗(1 − 𝜗∗) = 0 

(
(1−𝛼)

𝑘
− 1) 𝜗∗ + (1 −

(1−𝛼)

𝑘
) 𝜆𝜗∗(1 − 𝜗∗) = 0  

                (
(1−𝛼)

𝑘
− 1) (𝜗∗ − 𝜆𝜗∗(1 − 𝜗∗)) = 0 

                                       𝜗∗ − 𝜆𝜗∗(1 − 𝜗∗) = 0 

                               𝜗∗(1 − 𝜆(1 − 𝜗∗)) = 0    (3) 

Then, solving (3) we obtain ϑ* = 0 and          

ϑ∗ = 1 – 1/ as the trivial fixed point in the modified 

Mann procedure. The stabilization in the fixed-point 

state is determined using Devaney’s definition for 

attracting and repelling fixed points. For this let us 

consider  
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|𝑀𝑂′
𝛼,𝜆,𝑘(𝜗∗)| = |

(1−𝛼)

𝑘
+ (1 −

(1−𝛼)

𝑘
) 𝑓′(𝜗∗, 𝜆)|      

         = |
(1−𝛼)

𝑘
+ (1 −

(1−𝛼)

𝑘
) (𝜆 − 2𝜆𝜗∗)| 

        = |
(1−𝛼)

𝑘
+ (1 −

(1−𝛼)

𝑘
) (𝜆 − 2𝜆(1 − 1/𝜆))| 

        = |
(1−𝛼)

𝑘
+ (1 −

(1−𝛼)

𝑘
) (2 − 𝜆))| < 1 

 

Thus,  |𝑀𝑂′
𝛼,𝜆,𝑘(𝜗∗)| < 1 depending on the 

range of the control parameter λ, k and α ∈ [0,1]. 

Hence the given fixed point ϑ∗ = 1 – 1/ remains 

stable for a particular range of the control parameter 

λ depending on k and α ∈ [0, 1]. Similarly, the 

stability of fixed points of periodicity of orders 2n 

may be also determined on the same lines as 

discussed above. The stability in higher order 

periodic states, beauty of chaos and the dynamical 

nature of the logistic map using modified Mann 

procedure is demonstrated using the bifurcation 

plotting in “Matlab” which depends on the growth 

rate parameter λ and the additional Mann parameters 

α ∈ [0, 1] and k > 1. The following cases arises: 

 

2.1. When k = 2 and 0 < α < 1 

Taking k = 2 and α = 0.9, it is found that the 

dynamical system (2) admits all the dynamical 

properties such as stability region in fixed and a 

periodic state, periodic windows of higher orders, 

and period three window with full chaos. The first 

bifurcation in the system occurs at λ = 3.11 and the 

second bifurcation take place at λ = 3.58 which 

approaches for 3.58 < λ ≤ 3.68. The period–3 

window appears in the chaotic regime when the 

parameter λ lies between 3.978 and 3.995. Finally, 

the period–doubling bifurcation dynamics with the 

periodicity of order 2n approaches to λ = 4.10. Figure 

1 shows the complete bifurcation plotting for the 

system (2). 

Similarly, at k = 2, and α = 0.6 the dynamical 

properties like stability, period doubling and chaos 

is drawn in the Figure 2 for the full range of logistic 

parameter 0 ≤ λ ≤ 4.48. But in case of parameter α = 

0.3, it shows that the period-doubling occurs in the 

system for almost each degree and aperiodicity for a 

small range of the parameter λ while the overall 

regime of the logistic parameter λ lies between 0 and 

5. Figure 3 gives the complete presentation of the 

dynamical nature of the system for 0 ≤ λ ≤ 5. Further, 

the Figure 4 describes the dynamical nature for the 

system (2) for α = 0.1 and 0 ≤ λ ≤ 5.5. It shows that 

no chaos occurs in the system for the full range of 

parameter λ. 

 

Remark 2.1. It’s amazing to see that as the 

parameter α decreases from 1 to 0 the system (2) 

first admits full chaos and then starts to get the 

stability in chaos. Thus, the system becomes fully 

stable as α approaches to 0.1, that means, there 

exists no chaos. While the corresponding logistic 

parameter λ increases continuously as α decreases 

from 1 to 0. Table 1 gives overall details of the 

dynamical behaviour versus parameters k, α and λ. 

 

 
Figure 1:  Chaotic region of the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) for 0 ≤ λ ≤ 4.10, α = 0.9 

 

 
Figure 2:  Chaotic region of the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) for 0 ≤ λ ≤ 4.48, α = 0.6 

 

 
Figure 3: Chaotic region of the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) for 0 ≤ λ ≤ 5, α = 0.3 
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Figure 4: Chaotic region of the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) for α = 0.1, 0.3, 0.6, 0.9 

 

 

 
 

Table 1: Dynamical states for different parameter 

ranges of the parameters α, k, and λ 

 

2.2 When k = 3 and 0 < α < 1 

By fixing k = 3 and α = 0.9, it is studied from 

the Figure 5 that the modified Mann system 

generates stable fixed-point regime, period– 

doubling bifurcations, period-3 window and chaotic 

regime. The complete dynamical behaviour of the 

modified system (2) take place for the logistic 

parameter 0 ≤ λ ≤ 4 as shown in Figure 5. Similarly, 

at k = 3 and α = 0.6 the dynamical properties such as 

stable fixed point, periodicity of order 2n and the 

chaotic state are determined which exists for the 

logistic parameter 0 ≤ λ ≤ 4.30. Figure 6 shows the 

complete dynamics for the system at α = 0.6. 

 

 
Figure 5: Chaotic region of the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) for 0 ≤ λ ≤ 4, α = 0.9 

 

 
Figure 6: Chaotic region of the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) for 0 ≤ λ ≤ 4.3, α = 0.6 

 

 
Figure 7: Chaotic region of the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) for 0 ≤ λ ≤ 4.55, α = 0.3 

 

 
Figure 8: Chaotic region of the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) for α = 0.1, 0.3, 0.6, 0.9 

 

 

For k = 3 and α = 0.3 the chaotic region 

possessing period–doubling bifurcations but not 

period-3 window approaches to λ = 4.55 as shown in 

Figure 7 and for α = 0.1 the range of logistic 

parameter λ approaches to 4.80 but no period-3 

window exists here. Figure 8 shows a comparative 

analysis for the complete dynamics at α = 0.1, 0.3, 

0.6, 0.9. 
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Remark 2.2. Here, it is examined that at k = 3 and 

α = 0.9, 0.6 the system shows dynamical behaviour 

with period-3 window in chaotic regime and then the 

chaotic regime starts to decrease continuously as 

shown in Figure 8. But the logistic parameter range 

increases continuously as α approaches from 1 to 0. 

 

2.3. When k = 4 and 0 < α < 1 

In this section, we deal with the dynamics of 

the logistic map using modified Mann procedure (2) 

for the parameter value k = 4 and α = 0.9, 0.5, and 

0.1. For α = 0.9 the system shows all the dynamical 

properties and the logistic parameter λ approaches to 

4 as shown in Figure 9. At α = 0.5 and 0.1 it is 

observed that the system admits fixed point states, 

periodic states and chaotic states for the logistic 

growth rate parameter regime 0 ≤ λ ≤ 4.26, and 0 ≤ 

λ ≤ 4.55, respectively. Figure 10 shows a fully 

comparative dynamical behaviour for α = 0.9, 0.5 

and 0.1. Further, it is observed that as the parameter 

α decreases from 1 to 0 the growth rate parameter 

range increases simultaneously. 

 

 

 
Figure 9: Bifurcation plot for the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) when k = 4 and α = 0.9 

 

 
Figure 10: Bifurcation plot for the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) when k = 4 and α = 0.1, 0.5, 0.9 

 

 

Since the logistic growth rate parameter range in 

modified Mann procedure changes depending on the 

parameters k and α, therefore, in the next section a 

comparison versus standard Mann procedure and 

Picard procedure is described. 

 

Remark 2.3. It is noticed that as the value of the 

parameter k increase through 2, the growth rate 

parameter attains maximum 5.5 at k = 2 and then 

starts to decrease for k = 3, 4, 5 and so on as shown 

in Figures 1-10. 

 

3. MODIFIED MANN VERSUS STANDARD 

MANN AND PICARD ORBIT 

 

In this section, we deal with the comparative 

analysis versus modified Mann, standard Mann, and 

Picard iterative orbit. As we know that at k = 1 the 

modified Mann orbit reduces to the following 

standard Mann orbit [21]: 

 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) = 𝜗𝑛+1 = (1 − 𝛼)𝜗𝑛 + 𝛼𝑓(𝜗𝑛, λ) 

 

The dynamical behaviour of the standard 

logistic map using Mann iterative procedure was 

studied by Ashish et. al. [3, 4] in 2018 and 2019. The 

chaotic nature of the system is extended as the 

control parameter α changes in the closed interval 

[0, 1]. Due to an extra degree of freedom of the 

control parameter k > 1 the modified Mann 

procedure compel us to make this comparison. It is 

observed that when we take α = 0.1 and k = 2, the 

modified Mann system presents the stability in the 

system for 0 ≤ λ ≤ 5.5 and the stability is seen the 

chaotic region of the bifurcation plot as shown in 

Figure 4. While in Mann procedure the logistic 

parameter λ attains maximum value 4.22 when           

α = 0.9 and the bifurcation diagram so obtained 

consists of all the dynamical properties as shown in 

Figure 11. But in modified Mann iteration the 

growth rate parameter λ also approximately 

approaches to 4.22 for some different parameter 

values of α and k. 

 

Similarly, at α = 1 the modified Mann 

procedure (2) reduces to Picard iterative procedure 

ϑn+1 = f(ϑn, λ), where the logistic parameter λ 

converges to 4. Therefore, in the modified Mann 

procedure the logistic parameter λ converges to 4 for 

various values of parameters k and α, and is 

encountered first time at k = 3 when α = 0.9. The 

bifurcation diagram so obtained consists of all the 

dynamical characteristics as shown in Figure 12. 
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Figure 11: Bifurcation plot in Mann orbit for 0 ≤ λ 

≤ 4.22 and α = 0.9 

 

 
Figure 12: Bifurcation plot in Picard orbit for        

k = 3, 0 ≤ λ ≤ 4 and α = 0.9 

 

4. LYAPUNOV EXPONENT IN MODIFIED 

MANN ORBIT 

In the earlier section, we have discussed the 

dynamical behavior of the logistic map for different 

values of parameters k, α, and λ using modified 

Mann iterative orbit. Now, to measure the rate of 

convergence, divergence and sensitive dependence 

of two orbits there exists another important property, 

that is, Lyapunov exponent (ρ). Here, the negative 

value of the Lyapunov exponent represents the 

stability in the modified Mann orbits and the 

positive Lyapunov exponent gives instability in the 

modified Mann orbits. That means for the stable 

fixed and periodic orbits the Lyapunov exponent is 

always negative and for aperiodic orbits the 

Lyapunov exponent is always positive. Therefore, 

we deal with the Lyapunov exponent property of 

logistic map using modified Mann orbit for various 

parameter values of k, α, and λ. Thus, we start with 

the following modified Mann system (2): 

 

𝑀𝑂𝛼,𝜆,𝑘(𝜗𝑛) =
(1−𝛼)

𝑘
𝜗𝑛 + (1 −

(1−𝛼)

𝑘
) 𝑓(𝜗𝑛, 𝜆)  

 

 

where α ∈ [0, 1], k > 1 and ϑn ∈ [0, 1]. Therefore, by 

the definition of Lyapunov exponent for the map        

f (ϑ, λ) under the modified Mann iterative procedure 

is given by: 

𝜌 = lim
𝑝→∞

1

𝑝
∑ 𝑙𝑜𝑔|𝑀𝑂′

𝛼,𝜆,𝑘(𝜗𝑖)|

𝑝

𝑖=0

 

where p denotes the periodicity of the orbit. It is 

noticed that for the fixed point of periodicity one it 

reduces into ρ = log|𝑀𝑂′
𝛼,𝜆,𝑘(𝜗𝑖)|. 

 

 
Figure 13: Lyapunov spectrum for the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) for 0 ≤ λ ≤ 4.10, α = 0.9 

 

 
Figure 14: Lyapunov spectrum for the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) for 0 ≤ λ ≤ 4.48, α = 0.6 

 

 
Figure 15: Lyapunov spectrum for the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) for 0 ≤ λ ≤ 5, α = 0.3 
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Figure 16: Lyapunov spectrum for the system 

𝑀𝑂𝛼,𝜆,𝑘(𝜗) for 0 ≤ λ ≤ 5.5, α = 0.1 

 

In particular, the maximum Lyapunov 

exponent value for fixed, periodic and chaotic states 

is determined using the modified Mann system (2) 

at α = 0.9 and k = 2 and the growth parameter λ is 

determined.  Therefore, using (3) and taking α = 0.9, 

k = 2, 0 ≤ λ ≤ 3.08 and the fixed point ϑ∗ = 0.6666, 

we get 

 

 ρ = log|𝑀𝑂′
0.9,   3,   2(0.6666)|.      (4) 

 

Also, from (2) we obtain 

 

𝑀𝑂′
𝛼,𝜆,𝑘(𝜗∗) =

(1−𝛼)

𝑘
+ (1 −

(1−𝛼)

𝑘
) (𝜆 − 2𝜆𝜗∗)              

                                                                      (5)      

Then, from (4) and (5), we obtain 

 

         ρ = log|−0.8996| =  −0.0459 < 0.  (6) 

 

Similarly, taking α = 0.9, k = 2, 3.08 < λ ≤ 3.5728and 

the periodic points 𝜗1
∗ = 0.4653 and 𝜗2

∗ = 0.8505, 

of order-2, we get 

𝜌 =
1

2
𝑙𝑜𝑔|𝑀𝑂′

0.9,   3,   2(0.4653)| +

                        𝑙𝑜𝑔|𝑀𝑂′
0.9,   3,   2(0.8505)|]   (7) 

 

Then, from (5) and (7), we have  

 

𝜌 = −0.09678 < 0.                       (8) 

 

Thus, in all the above cases no chaos occurs 

for some given values of α, k and λ, because, the 

Lyapunov exponent attains negative Lyapunov 

exponent which is an indication of no chaos. Figure 

13-16 shows that the Lyapunov spectrum in the 

negative quadrant approaches to the stable states and 

the Lyapunov spectrum in the positive quadrant 

approaches to the irregularity in the system, that is, 

chaos. 

 

 

 

5. CONCLUSION 

Using the modified Mann orbit the dynamics 

for the standard one-dimensional logistic map is 

carried out. The analytical as well as computational 

study is described through the modified control 

parameters α, k, and the logistic parameter λ. Since 

the whole dynamics in the system depends on the 

parameters α and k, therefore, the following results 

are concluded: 

1. In the Section 2, the modified Mann system is 

introduced using the one-dimensional logistic 

map and the modified Mann iterative procedure. 

Then, the corresponding fixed points in the 

system are determined and their stability is 

studied. It is observed that the fixed states of 

order-1 generated in the modified Mann system 

are similar to the trivial fixed points in the Mann 

orbit. 

2. Due to the dependency on the parameters α and 

k, some special cases are derived for different 

values of k > 1 and 0 ≤ α ≤ 1. The complete 

dynamical behaviour is analysed using 

bifurcation plot. 

3. Therefore, it is clear from the bifurcation plots 

that at k = 2 and α ∈ [0, 1] the growth rate 

parameter (λ) range increases continuously while 

the system approaches to stability in chaos. But 

as the value of k increases the system approaches 

to fully chaos, that means, fixed, periodic and 

chaotic behaviour. The Lyapunov spectrum is 

drawn and the Lyapunov value is determined for 

different parameter values of α. 
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