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ABSTRACT: In this paper, the analytic structure of a Bivariate Double Gumbel probability density
function (BDGDEF) is developed. Its application becomes important in estimating design events of
hydraulic projects with a large regulating capacity when the main random variables are the maximum
annual inflow rate and the maximum annual flow volume. A genetic algorithm was applied to obtain the
set of parameters of the Bivariate Double Gumbel probability function, in order to maximize the likelihood
function (L) for the recorded data in a hydrometric station. Results were then compared with those obtained
from a deterministic algorithm.
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1. INTRODUCTION

Dimensioning of many hydraulic works depends on a large extent on the design flood; in
addition, the update of design inflow rates applicable to existing hydraulic projects is important
for any country for safety reviews of the structures. At dams with a large regulating capacity,
the performance of the spillway works is governed by both the maximum annual inflow rate
and the maximum annual flow volume; therefore, some design methods take into account the
statistical analysis of historical runoff associated to different durations, (Dominguez, 1980),
others, such as those proposed by (Hiemstra, 1979), (Rivera, 1999), (Ramirez, 2000), and
(Jiménez Espinoza, 2000), consider the effects of both the instantaneous peak flow rates and
flood volume through the use of bivariate analysis.

On the other hand, in Mexico and other countries inflow rates data and maximum annual
volume data for a given frequency are derived from two populations (González Villarreal,
1970; Rossi et al., 1984), the first population is associated to conventional events and the
second population could be either due to events of hurricane type or to winter phenomena
(such as in the case of northwestern Mexico).
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Unfortunately, Double Gumbel function has 5 parameters, and therefore, Bivariate Double
Gumbel function (BDGF) has 11 parameters; such a number of parameters makes unpractical
the application of least squares method or even the moments method to find them, because of
the increase in the number of moments needed and in the number of non linear equations to
solve. The maximization of the likelihood function (L) is recommended in such cases.

Because the computation of the likelihood function (L) requires the calculation of the
probability density function and the structure for the BDGF was not found in the technical
literature, this study presents the analytical calculation of the BDGDEF based on its probability
distribution function.

Once such distribution is obtained, it becomes possible to obtain its parameters by
maximizing the likelihood function (L) through applying a traditional optimization algorithm
(deterministic) or the optimization technique, based on evolutionary computation, (Goldberg,
1989). A comparison of the advantages and disadvantages of these two optimization methods
is discussed in this paper using as example data recorded at Huites station on the northwestern
México.

2. METHODOLOGY

2.1. Bivariate Distribution Function

The general equation for bivariate extreme value distributions functions is given by Escalante
Sandoval (2007).

{ }1/
( , ) exp ( ln ( )) ( ln ( ))

mm mF x y F x F y = − − + −  (1)

Where F(x, y) is the probability of having simultaneously, X ≤ x and Y ≤ y; F(x) and F(y)
are marginal distributions and m is an association parameter that depends on the degree of
interdependence between the random variables X and Y.

The appearance of the marginal distributions can be regarded as Gumbel, as general of
extreme values or as two-population Gumbel.

2.2. Bivariate Density Function

The probability density function f(x, y) of a bivariate function is obtained from its distribution
function F(x, y) as:

2 ( , )
( , )

F x y
f x y

y x

∂=
∂ ∂ (2)

If a function g(x, y) is defined as:
1/

( , ) ( ln ( )) ( ln ( ))
mm mg x y F x F y = − − + −  (3)
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Taking into account the derivative of the function of a function and partially deriving, the
probability density function can be expressed as (Appendix I):

2
( , ) ( , ) ( , ) ( , )

( , ) g x y g x y g x y g x y
f x y e

x y y x

 ∂ ∂ ∂= + ∂ ∂ ∂ ∂ 
(4)

With the partial derivatives of g(x, y) given in Appendix II.

With a different approach and defining function v(x, y) as:

( , ) ( ln ( )) ( ln ( ))m mv x y F x F y= − + − (5)

The value of f(x, y) can be obtained, also analytically as:

[ ] 1
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− −− −
 ∂ ∂   = − − − + ∂ ∂    

(6)

2.3. Bivariate Double Gumbel Function

The Bivariate Double Gumbel distribution function (BDGDIF) establishes the relationship
between two random variables, each of them constituted by two populations in which one
includes data of considerably higher magnitude identifying extreme conditions.

The marginal functions of a double Gumbel function can be expressed as:

1 2

1 2

( ) exp exp exp exp (1 )x x
x a x a

F x p P
c c

      + +   = − − + − − −      
         

(7)

3 4
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where a
1
, a

2
, a

3
 and a

4
 are location parameters; c

1
, c

2
, c

3
 and c

4
 are scale parameters; p

x
 and p

y

are segregation parameters of variables x and y, respectively.

The derivatives of the marginal functions F(x) and F(y) of a Double Gumbel are shown in
Appendix III.

Because of the importance of precision in the calculations of the BDGDEF, f(x, y) for the
evaluation of the likelihood function (L), in Appendix IV are shown some tests made for equations
4 and 6, first using the Bivariate Gumbel function (BGF) and then the more complex BDGF.

 Results show that both eq. 4 and eq. 6 lead to results with enough accuracy, since equation
4 is easier to use, it will be employed in this study.
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2.4. Method of Maximum Likelihood

It is established in this method that for a random variable x having a probability density function
p(x; α

1
, α
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n
) where α

1
, α

2
, …, α

n
 are the parameters of such function, the probability of

obtaining a given value x
i
, is proportional to p(x
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n
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This function is known as likelihood (Kite, 1988; Escalante Sandoval, 2007). The method
of maximum likelihood implies the calculation of parameters α

1
, α

2
, …, α

n
 such that L becomes

maximum; traditionally this can be obtained by maximizing the logarithm of the L function:
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log log ( ; , ,..., )
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L p x
=

= α α α∑ (10)

Its derivatives with respect to each of its parameters are:

log
i

i

L
e

∂=
∂α (11)

To obtain the extreme values of log L these derivatives are set to zero.

Sometimes, maximization of the logarithm of L through the use of derivatives may lead to
local minimums (Rao, 2000; Smith, 1988; Horbelt, 2002; Myiung, 2003) rather than to the
maximum global value.

In this report, it is proposed to take advantage of the capability of the genetic algorithms to
directly obtain the parameters to maximize the function L or its logarithm with no further need
to calculate the derivatives of equation 10, and set them to zero.

2.5. Simple Genetic Algorithm

The traditional genetic algorithm (Holland, 1975; Goldberg, 1989) generates an initial population
of n individuals (in this case, parameters of the models); its fitness is evaluated with an objective
function. A selection is made of the best fitted individuals with the universal stochastic method
or with the roulette procedure. Those individuals are subjected to the crossover and mutation
operators and a new population is created, with n individuals that define the next generation;
the fitness evaluation process, the selection of the most suitable individuals, crossover and
mutation operations and the creation of another population are iterated until a number of
generations previously established is achieved.

In this paper, the simple genetic algorithm implemented in Matlab’s toolbox (MathWorks,
1992) was applied, whose structure is similar to all evolution-based algorithms, (Bäck, 1996).

There were two objective functions applied in the genetic algorithm to determine the fitness
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of the individuals: a) the direct maximization of the likelihood function L and b) the maximization
of the logarithm of L.

3. APPLICATION

3.1. Example of Application to Huites Station

Values of n = 52 maximum annual instantaneous flow rates and of volumes recorded at Huites
station in the State of Sinaloa, shown in Table 1, were used; the station was located in the
northwestern part of Mexico and it stopped operating in 1992, the year when Huites dam was
built. This region is characterized by its important runoff during the winter season of several
years (highlighted in Table 1), therefore, data of maximum annual flow rates and volumes are
generally constituted by two different populations, for which the Double Gumbel distribution
function is the most suitable for better fitting purposes.

Table 1
Historic Record of Maximum Flow Rates and Volumes. Huites Station

Year Q(m3/s) V(106 m3) Year Q(m3/s) V(106 m3)

1941 2085 458 1968 1534 1706
1942 2531 1302 1969 1508 837
1943 14376 1928 1970 1558 1001
1944 2580 871 1971 2200 905
1945 1499 684 1972 2225 442
1946 1165 720 1973 7960 1250
1947 1127 435 1974 3790 607
1948 3215 344 1975 1095 1768
1949 10000 2966 1976 2677 565
1950 3229 644 1977 1135 601
1951 677 111 1978 4790 1245
1952 1266 474 1979 6860 986
1953 1025 163 1980 1496 1076
1954 955 596 1981 4828 992
1955 4780 787 1982 2450 351
1956 696 513 1983 8275 1625
1957 593 69 1984 5580 1258
1958 3010 740 1985 3585 1092
1959 1908 352 1986 1349 1185
1960 15000 1842 1987 1429 766
1961 1396 689 1988 1866 683
1962 1620 437 1989 1868 428
1963 2702 885 1990 11558 2930
1964 1319 384 1991 2563 653
1965 1944 305 1992 2025 601
1966 2420 2716
1967 2506 593
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In Ramírez and Aldama, 2000, the obtained parameters of the BDGDIF, are maximizing
the likelihood function L using eq.’s 10 and 11 along with the deterministic optimization method
proposed by Rosenbrock, 1960. Their results and those obtained by means of a genetic algorithm
are presented herein; finally it is made a comparison with respect to an empirical distribution
function.

The genetic algorithm performed a random search of the BDGF parameters (eq. 4) based
on two criteria: the direct maximization of the likelihood function L and the maximization of
the logarithm of L. In a general case p

x
 and p

y
 take values between 0.5 and 1 and the value of m

can be estimated around the value given by eq. 12 (Ramírez and Aldama, 2000):

1

1 QV

m
r

≈
− (12)

Where r
QV

  is the correlation coefficient between Q and V. In order to give a variation
interval for the rest of the parameters, an analysis of the marginal distribution function can be
made using the moments method. So the genetic algorithm obtains a total of 11 parameters.
Five thousand generations and populations of 200 individuals were considered; the results thus
obtained and the corresponding values by Ramírez and Aldama, 2000 are presented in Table 2.

Table 2
Comparison of Values of the Bivariate Double Gumbel Function Parameters

Genetic Algorithm (GA)

Parameter Ramírez & Aldama Max ( L) Max (log L)

a
1

-1604.57 -1853.79 -1516.39

c
1

740.66 767.93 680.94

a
2

-6669.27 -6440.17 -5729.79

c
2

3071.53 3115.82 3140.60

a
3

-531.94 -307.25 -560.35

c
3

304.02 259.43 314.77

a
4

-1324.47 -1619.20 -2000.00

c
4

728.61 862.94 686.07

p
x

0.7618 0.7694 0.7383

p
y

0.8101 0.6668 0.9056

m 1.6021 1.1134 1.6668

Results in Table 2, show that when maximizing L there is a large variation in parameters p
y

and m against the values obtained by Ramírez and Aldama, 2000.

When the log L is maximized, some variations are presented on p
y
 and a

4
 (with respect to

Ramírez and Aldama); such differences can be attributed to the methods of optimization applied
(deterministic and random, respectively) and its implications will be shown in the next section.
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3.2. Determination of the Empirical Distribution Function

To get an empirical probability ˆ ( , )F x y  of not exceeding neither x or y, data were classified
from higher to lower with respect to the values of flow rates, maintaining the volume of the
corresponding year; subsequently, k data smaller or equal than both pairs of values were counted.
The value of k for each pair of data was divided by the total number of data plus one (n + 1) so
as to obtain the value of ˆ ( , )F x y ; afterwards, the empirical probabilities were compared with
the results obtained by Ramírez and Aldama, 2000, the direct maximization of L and the
maximization of its logarithm (in this document was applied the natural logarithm, denoted by
Ln). Table 3 contains a sample of the results, including the mean square error, and Figures 1 to
3, show the graphical association between empirical and theoretical values for the three cases.

Figure 2: Comparison between F(x, y) Empirical and the Function Obtained with an GA
by Maximizing log L

Figure 1: Comparison between F(x, y) Empirical and the Function Obtained by Ramírez and
Aldama (Ramirez, 2000)

Empirical
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Figure 3: Comparison between F(x, y) Empirical and the Function Obtained with an GA by Maximizing L

Table 3
Estimation of the Non Exceedance Probabilities. Bivariate Double Gumbel Function. Huites Station

Ordered Values smaller F Empirical F Theoretical
According to or equal than

Q Q and V

I Q(m3/s) V(106 m3) k k/(n+1) Ramírez GA Max GA Max
& Aldama (Ln L) (L)

1 15000 1842 48 0.906 0.912 0.915 0.811
2 14376 1928 48 0.906 0.920 0.922 0.821
3 11558 2930 49 0.925 0.949 0.954 0.903
4 10000 2966 49 0.925 0.927 0.935 0.886
5 8275 1625 45 0.849 0.835 0.851 0.723
6 7960 1250 42 0.792 0.761 0.783 0.661
7 6860 986 35 0.660 0.649 0.670 0.590
8 5580 1258 41 0.774 0.721 0.744 0.617
9 4828 992 35 0.660 0.622 0.643 0.550
10 4790 1245 39 0.736 0.700 0.722 0.594
... ... ... ... ... ... ... ...
40 1396 689 10 0.189 0.152 0.173 0.080
41 1349 1185 11 0.208 0.177 0.202 0.088
42 1319 384 4 0.075 0.065 0.072 0.042
43 1266 474 5 0.094 0.081 0.092 0.044
44 1165 720 8 0.151 0.100 0.116 0.044
45 1135 601 7 0.132 0.081 0.094 0.036
46 1127 435 4 0.075 0.055 0.063 0.027
47 1095 1768 6 0.113 0.104 0.118 0.046
48 1025 163 3 0.057 0.010 0.010 0.007
49 955 596 4 0.075 0.050 0.058 0.019
50 696 513 3 0.057 0.017 0.019 0.005
51 677 111 2 0.038 0.002 0.002 0.001
52 593 69 1 0.019 0.001 0.001 0.000

Mean square error 0.001 0.001 0.009
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Table 3 and Figures 1 and 2, show that the results obtained by Ramírez and Aldama, 2000
and those obtained by maximizing the logarithms of function L by means of genetic algorithms
(GA), have a very good agreement between the empirical and the calculated values, being a
little bit better in the second case. On contrast, the direct maximization of L using the genetic
algorithm produced a larger deviation between the empirical and the calculated values, as it is
shown in Figure 3. This last result can be attributed to the fact that the values of the density
function (eq. 4) are small by themselves; consequently, when performing the consecutive product
of the 52 values to evaluate function L, the result tends to zero, and then, upon advancing in the
number of iterations the genetic algorithm loses sensitivity in the search for the optimum set of
parameters.

It is important to remember that when the first derivate of the function is set to zero, a
maximum, a minimum or even an inflexion point can be obtained, so, when the first derivate is
avoided to get the parameters of the function L, and those parameters are obtained by the direct
maximization of L, there is not risk to fall in a minimum instead of a maximum in the function.

4. CONCLUSION

In this paper, an analytical determination of the density function of a Bivariate Double Gumbel
distribution was made; the obtained results (eq. 4) were tested to be sure on their accuracy. The
density function was used to obtain the parameters of the corresponding distribution function
through the use of a genetic algorithm for the maximization of the likelihood function L or of
the logarithm of L. The results thus obtained were compared with those calculated using a
deterministic algorithm using empirical probabilities as parameter in order to judge its
approximation. It was found that, for the case of Huites hydrometric station, the maximization
of the logarithm of the probability function L using genetic algorithms provided the best
correlation with respect to the empirical distribution, followed practicaly with the same accuracy
by the deterministic method used by Ramírez and Aldama, 2000. The direct optimization of
function L using also genetic algorithms did not give that good result, as it is shown in Table 1
and in Figure 3.

In this case, the use of the logarithm of L helped the genetic algorithm to be able to reach
the set of parameters that achieved the best response to the objective function in the last
generation. The shortcoming in the direct use of function L refers to the fact that when the
density function, for each pair of values of flow rate and volume are very small, the product of
such values tends to zero and the computer is no longer capable of representing it; as a
consequence, the algorithm disagrees with the determination of the optimum set of parameters.

The use of genetic algorithms appears to be promising for the estimation of parameters that
maximize the likelihood function L. However, the use of its logarithms is recommended to
avoid the calculation of very small values that could produce accuracy problems. Joint application
of L-moments (Eslamian and Feizi, 2007) and genetic algorithms are of interest for further
investigations.
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6. APPENDIX

6.1. Appendix I

The derivate of the eu function is given by:

u ud du
e e

dx dx
= (I.1)

Partially deriving F(x, y) with respect to x:
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( , )( , ) ( , )g x yF x y g x y
e

x x

∂ ∂ =  ∂ ∂  (I.2)

Considering the deriving formula for a product:

( )d uv du dv
v u

x dx dx
= +

∂ (I.3)

Partially deriving eq. I.2 with respect to y:

2 2
( , ) ( , )( , ) ( , ) ( , ) ( , )g x y g x yF x y g x y g x y g x y

e e
y x x y y x

  ∂ ∂ ∂ ∂= +     ∂ ∂ ∂ ∂ ∂ ∂   
(I.4)

Finally:

2 2
( , )( , ) ( , ) ( , ) ( , )g x yF x y g x y g x y g x y

e
y x x y y x

 ∂ ∂ ∂ ∂= + ∂ ∂ ∂ ∂ ∂ ∂ 
(I.5)

6.2. Appendix II

Partially deriving g(x,y) with respect to x:

( )
1 1( , ) ( ln ) ( )

( ln ( )) ( ln ( ))
( )

m m
m m mg x y Fx F x

F x F y
x F x x

−  −  
 ∂ − ∂ = − − + −   ∂ ∂ 

(II.1)

Similarly, for the partial derivative of g(x,y) with respect to y:

( )
12 1( , ) ln ( )) ( )

( ln ( )) ( ln ( ))
( )

m m
m m mg x y F y F y

F x F y
y x F y y

−  −  
 ∂ − ∂ = − + −   ∂ ∂ ∂ 

(II.2)

The mixed partial of g(x, y) is obtained by partially deriving equation II.1 with respect to y:

( )
12 1

11

( , ) ( ln ( )) ( )
( ln ( )) ( ln ( ))

( ln ( )) ( )
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 − ∂ ∂  − + −    ∂ ∂   

(II.3)

Simplifying:

1 22 1 1( , ) ( ln ( )) ( ) ( ln ( )) ( )
( 1) ( ln ( )) ( ln ( ))

( ) ( )

m m m
m m mg x y F y F y F x F x

m F x F y
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− − −   ∂ − ∂ − ∂ = − − + −     ∂ ∂ ∂ ∂   

(II.4)

+
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6.3. Appendix III

The derivates of the marginal functions of a Double Gumbel function are given by:

21 1 2
1 2

1 2

1 2

( ) 1
(1 )

x a x a

c c
x a x a

c ce ex
x

pF x
e e p e e

x c c

   + +− −         

   + +− −   
− −   ∂ = + −

∂
(III.1)

 

3 43 4
3 4

3 4

3 4
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y a y a
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y a y a
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y

pF y
e e p e e
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 +  +− −         

   + +− −   
− −   ∂ = + −

∂
(III.2)

6.4. Appendix IV

The accuracy in calculating the density function is very important in the application of the
maximum likelihood method; because of this, several tests described in this appendix were
made. First, the equivalence between eq. 4 and eq. 6, then their behavior in the particular case
of the BGF and finally, the estimation of the volume under the surface in a given region are
presented.

To check the equivalence of eq. 4 and eq. 6 in a BDGF, values of its 11 parameters
were proposed (Table IV.1); the results obtained for some values of pairs (x, y) are presented in
Table IV.2.

Table IV.1
Proposal of Values for a Bivariate Double Gumbel Function

Parameters Value Parameters Value

a
1

-1240.8351 c
1

281.07395
a

2
1000 c

2
100

a
3

-439832.88 c
3

250433.49
a

4
1000 c

4
100

p
x

0.8 p
y

0.7
m 1.5

Table IV.2
Results Obtained for Bivariate Double Gumbel Function f(x, y)

f(x, y)

x y Eq. 4 Eq. 6

1100 300000 9.429E-10 9.429E-10
1400 300000 8.385E-10 8.385E-10
1100 600000 7.068E-10 7.068E-10
1400 600000 1.058E-09 1.058E-09

Results given in Table IV.2 verify that equations 4 and 6 are equivalent to estimate the
density function of a BDGF.

In order to examine equations 4 and 6 in a particular case, let us consider the BGF whose
probability distribution function is given by:
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31 1
31( )( , )

y ax a mm
cc me eF x y e

−  −  −−        − += (IV.1)

Partially deriving with respect to x and then with respect to y, the following simplified
density function is obtained:

31
31 1

31 31( )

1 3

( , )

y ax a mm
cc m

y ax a
mm

cc
e ee e

F x y e
c c

−  −  −−        

   −− −−   
   

− += (IV.2)

The form (IV.2) of the BGDEF is relatively easier to obtain from literature (Escalante
Sandoval 2007), but it is not easy to find the form of a BDGDEF. In order to verify the
equivalence of equations 4, 6 with IV.2 in some points (x, y), the parameters a

1
, c

1
, a

3
,
 
c

3
 and m

of Table IV.3 were suggested. The results are shown in Table IV.4.

Table IV.3
Proposal of Values of a Bivariate Gumbel Function

Parameters Value

a
1

-1240.8351
c

1
281.07395

a
3

-439832.88
c

3
250433.49

m 1.5

Table IV.4
Comparison of the Bivariate Gumbel Values of f(x, y)

F(x, y)

x Y Eq. 4 Eq. 6 Eq. IV.2

1100 300 000 2.060E-09 2.060E-09 2.060E-09
1400 300 000 1.272E-09 1.272E-09 1.272E-09
1100 600 000 1.259E-09 1.259E-09 1.259E-09
1400 600 000 1.767E-09 1.767E-09 1.767E-09

From Table IV.4, it can be verified that equations 4, 6 and IV.2 are equivalent for purposes
of estimating the density function of a BGF.

6.4.1. Verification in Estimating the Bivariate Double Gumbel Density Function by the
Calculation of the Volume under the Surface f(x, y)

In order to check the analytical solution obtained for the BDGDEF, an approach to the volume
under the surface f(x, y), in a region such as those presented in Figure IV.1 is compared with the
probability of being in the region as obtained from the distribution function (eq. 1) considering
extreme x, y values and assuming values for the 11 parameters of the function.

The volume under the density function in a region such as that presented in Figure IV.1 can
be estimated as:
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In another way, the probability of being in the region can be calculated from the distribution
function given by eq. 1 as:

Volume = F(x
max

, y
max

) – F(x
min

, y
max

) – F(x
max

, y
min

) + F(x
min

, y
min

) (IV.4)

Taking into account Figure IV.1 and assuming values of x
min 

= 1100 and a x
max 

= 1400, with
a ∆x = 25, y

min 
= 300000 and a y

max 
= 600000,with a ∆y = 25000 and the parameters given in

Table IV.5, equations IV.3 and IV.4 are applied with the results presented on Table IV.6 :

( , )
( max min)( max min) ; 1,2,3...

i

f xi yi
Volume x x y y i n

n
≈ − − =∑ (IV.3)

Table IV.5
Parameters Considered in Estimating the Volume under the Surface f(x, y)

Parameters Value Parameters Value

a
1

-1240.8351 c
1

281.07395
a

2
1000 c

2
100

a
3

-439832.88 c
3

250433.49
a

4
1000 c

4
100

px 0.8 py 0.7
m 1.5

Table IV.6
Results in Estimating the Volume under the Surface with eq. IV.3 and IV.4

Eq. IV.3 Eq. IV.4

0.1096 0.1033

Figure IV.1: Region under the Curve f(x, y)

y
max

y
min

x
min

x
max

The difference between the volumes reported in Table IV.6 is about 6% and can be attributed
to the approximation given by eq. IV.3.


