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ABSTRACT 

In this an attempt has been made to solve some parabolic partial differential equations by using finite 

differences methods.  

We consider one-dimensional quasi-linear parabolic partial differential equation: 

 
The nonlinear partial differential equation is a homogenous quasi-linear parabolic partial differential equation 

which encounters in the theory of shock waves, mathematical modelling of turbulent fluid and in continuous 

stochastic processes. Such type of partial differential equation is introduced by Bateman in 1915 and he 

proposes the steady-state solution of the problem. In 1948, Burger use the nonlinear partial differential 

equation to capture some features of turbulent fluid in a channel caused by the interaction of the opposite 

effects of convection and diffusion, later on it is referred as Burgers’ equation. The structure of Burgers’ 

equation is similar to that of Navier-Stoke’s equations due to the presence of the non-linear convection term 

and the occurrence of the diffusion term with viscosity coefficient. The study of the general properties of the 

Burgers’ equation has attracted attention of scientific community due to its applications in the various fields 

such as gas dynamics, heat conduction, elasticity, etc 

 

In this, a numerical algorithm for the solution of the burger’s equation based on Galerkin method employing 

linear finite elements is developed. The performance of this algorithm is investigated b comparing solutions to 

two well known problems with data available in literature. The new method produces highly accurate 

numerical solutions for burger’s equation even for small value of viscosity coefficient. The method does, in 

fact, produce more accurate results then many of the other methods. 

 

Numerical Solution of Burger’s Equation by Using Galerkin Finite Element Method 

 

Introduction 

 

Consider one-dimensional quasi-linear parabolic partial differential equation: 

 (1.1) 

where 

 
with initial condition 

 

          (1.2) 

and boundary conditions 

              (1.3) 

            (1.4) 
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where and R is the Reynolds number and f , g1 and g2 are the sufficiently smooth given functions. 

 

The nonlinear partial differential equation (1) is a homogenous quasi-linear parabolic partial differential 

equation which encounters in the theory of shock waves, mathematical modeling of turbulent fluid and in 

continuous stochastic processes. Such type of partial differential equation is introduced by Bateman [16] in 

1915 and he proposes the steady-state solution of the problem. In 1948, Burger use the nonlinear partial 

differential equation to capture some features of turbulent fluid in a channel caused by the interaction of the 

opposite effects of convection and diffusion, later on it is referred as Burgers’ equation. The structure of 

Burgers’ equation is similar to that of Navier-Stoke’s equations due to the presence of the non-linear 

convection term and the occurrence of the diffusion term with viscosity coefficient. The study of the general 

properties of the Burgers’ equation has attracted attention of scientific community due to its applications in 

the various fields such as gas dynamics, heat conduction, elasticity, etc.  

 

The study of the solution of Burgers’ equation has been carried out for last half Century and still it is an active 

area of research to develop better numerical schemes to approximate its solution. In 1965, Holf and Cole [18] 

propose a transformation known as Holf-Cole transformation to solve the Burgers’ equation. In 1972, Benton 

and Platzman [19] published a number of distinct solutions to the initial value problems for the Burgers’ 

equation in the infinite domain as well as in the finite domain. Caldwell and Smith [20] use finite difference 

and cubic spline finite element methods to solve Burgers’ equation. Evans et al. [21] introduce the group-

explicit method and Kakuda et al. [22] propose a generalized boundary element approach to solve Burgers' 

equation. Ali et al. [23] use a cubic B-spline finite element method based on a collocation formulation to solve 

Burgers’ equation. Mittal et al. [24] present a numerical approximation based on one dimensional Fourier 

expansion with time dependent coefficients. Gardner et al. [25] apply Petrov-Galerkin method with quadratic 

B-spline spatial finite elements and use a least squares technique using linear space-time finite elements [26]. 

In [27], Ozis and Ozdes generate a sequence of approximate solutions based on variational approach which 

converges to the exact solution. In [28], Kutluay et al. transform the Burgers’ equation to linear heat equation 

using Hopf-Cole transformation and then use explicit finite difference and exact explicit finite difference 

methods to solve the transformed linear heat equation with Neumann boundary conditions. In [29], Kutluay et 

al. reduce Burgers’ equation to a pentadiagonal matrix system by applying the classical weighted residual 

method over the finite elements which is solved by a variant of Thomas algorithm together with an iteration 

process at each time step. Ozis et al. [30] use a finite element approach for numerical solution of Burgers' 

equation. Kadalbajoo et al. [31] propose a parameter uniform numerical method to solve Burgers’ equation 

with small coefficient of viscosity and establish robust error estimate. Kadalbajoo et al. [32] use Crank-

Nicolson finite difference method on the transformed linear heat equation with Neumann boundary conditions 

and the method is proved to be unconditionally stable. Recently, Kannan and Wang [33] have developed a 

high order spectral volume method using the Hopf–Cole transformation for the numerical solution of Burgers' 

equation while Altiparmak and Özis [34] used factorized diagonal Padé approximation method for the 

numerical solution of Burgers' equation while Korkmaz and Dağ [9] proposed a numerical method for 

nonlinear Burgers’ equation. 

 

Recently, Korkmaz and Dag [15-22] proposed sinc differential quadrature method, B-spline differential 

quadrature methods and cosine expansion based differential quadrature method for many nonlinear partial 

differential equations. Mittal have used polynomial based differential quadrature method for numerical 

solutions of some two dimensional nonlinear partial differential equations. 

 

In this chapter, Galerkin-finite element method is proposed for the numerical solution of Burgers’ equation. A 

linear recurrence relationship is found for the numerical solution of resulting system of ordinary differential 

equations is found vai a Crank-Nocolson approach involving a product approximation. The results show that 

the proposed method is more accurate. 
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Galerkin-Finite Element Method for Numerical Solutions of Burgers’ Equation 

The burger’s equation 

             (1.5) 

When applying Galerkin’s method we minimise the functional 

    (1.6) 

where i is the weight function, with respect to nodal variables. 

 

A numerical solutions to the partial differential equation is sought over the region x0  x  xN with boundary 

conditions specified at x = x0, x = xN. the region [x0, xN] is splitter up into uniformly sized intervals by xi such 

that x0 < x1 < … < xN. A typical finite element of size , mapped by, local coordinates 

, makes the integral (3.6) the contribution. 

   (1.7) 

where to simplify the integral, Uˆ is taken to be constant over the element. this leads to 

     (1.8) 

 
and b and v are taken as locally constant over each element. The variation of U over the element 

  is expressed as 

                              (1.9) 

where P1, P2 are linear spatial basis function and u1, u2 are the nodal parameters. With the local coordinate 

system  defined above the basic functions have the following expressions [18] 

 
For gale kin’s method we identify the weight function i with basis function Pi giving 

        (1.10) 

Integrating by parts leads to 

      (1.11) 

Now if we substitute for U using equation (1.9) an element’s contribution is found in the form 

  (1.12) 

In the matrix notation this becomes 

               (1.13) 

Where  are the relevant nodal parameters. The element matrices is 

 
And v is given as 
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 is constant over the element. 
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By assembling together contributions from all elements we find the matrix equation 

           (1.14) 

And , contains all parameters, a typical member of the equation (1.14) is 

 

 

 

 
 

 

 

We can use Crank-Nicolson approach in order to find a numerical solution for this ordinary differential 

equation. Taking a time center as , We can write 

 

 
Hence we find the recurrence relationship 

 
 

The boundary conditions, U(x0,t) = 0 and U(xN,t) = 0 demands u0 = 0 and uN = 0. 

 

The above set of quasi-linear equation has matrix which is tri-diagonal in form so that a solution applying the 

Thomas algorithm is feasible. 

 

Numerical Experiments 

In order to demonstrate the adaptability and the accuracy of the present method, we consider some test 

example available in the literature. The exact solutions of these examples are also available in the literature 

which is obtained by Hopf-Cole transformation. The numerical solutions generated by proposed method are 

compared with exact solution at the different nodal points. 

 

 

Example1: Consider Burger’s equation (1.1) with initial condition 

                 (1.15) 

and homogeneous boundary conditions 

 
The analytic solution to this problem can be expressed as an infinite series 
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 (1.16) 

where 

,            (1.17) 

 

The numerical solutions of the Example are presented in the Tables 1-2 and Figures 1-3. Table 1 shows the 

comparison of numerical and exact solutions at  = 1.0 and at different times. The Table shows as we decrease 

step length the numerical solutions converges to the exact solutions. Similarly, Table 2 shows the comparison 

of numerical and exact solutions at  = 0.1, 0.01and at different times. The Figures 1-3 show the physical 

behaviour of the problem at  and different times. 

 

Example 2: Consider Burger’s equation (1.1) with initial condition 

        (1.18) 

and boundary condition 

            (1.19) 

The exact solution of example is obtained by Half-sole transformation and given by 

    (1.20) 

where 

 

        (1.21) 

 

The numerical solutions of the Example are presented in the Tables 3-4 and Figures 4-6. Table 3 shows the 

comparison of numerical and exact solutions at  = 1.0 and t = 0.1 The Table shows numerical solutions are 

good in agreement with the exact solution. Similarly, Table 4 shows the comparison of numerical and exact 

solutions at  = 0.1, 0.01and at different times. The Figures 4-6 show the physical behaviour of the problem at 

 and different times. 

 

 

Conclusion 

 

A numerical algorithm for the solution of the burger’s equation based on Galerkin method employing linear 

finite elements is developed. The performance of this algorithm is investigated b comparing solutions to two 

well known problems with data available in literature. The new method produces highly accurate numerical 

solutions for burger’s equation even for small value of viscosity coefficient. The method does, in fact, produce 

more accurate results then many of the other methods. 
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Figure 1: Numerical Solution of Example 1 at different times t and values of  = 1.0 and t = 0.0001 

 

 
Figure 2: Numerical Solution of Example 1 at different times t and values of  = 1.0 and t = 0.0001 
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Figure 3: Numerical Solution of Example 1 at different times t and values of  = 1.0 and t = 0.0001 

 

 
Figure 4: Numerical Solution of Example 2 at different times t and values of  = 1.0 and t = 0.0001 

 

 

 
Figure 5: Numerical Solution of Example 2 at different times t and values of  = 1.0 and t = 0.0001 
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Figure 6: Numerical Solution of Example 2 at different times t and values of  = 1.0 and t = 0.0001 
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