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Abstract 

The research has been conducted on practical application of coordinate geometry. Architecture, geolocation 

(GPS), determining latitude and longitude, locating air transportation, map projections, contemporary 

technology like robotics and video games, artistic works, etc. are examples of real-world applications of the 

aforementioned issue. The comprehensive paper includes in-depth research on the practical use of coordinate 

geometry for calculating distance and its significance in the current gaming industry. A brief historical overview 

of coordinate geometry and its use in our research field is provided at the outset of the report. The definitions 

and theorem statements we employed in our research are included in the report's subsequent sections. Two 

categories best describe our study aims. The first part includes a thorough explanation of how coordinate 

geometry is used to calculate the distance between two points on a map using their coordinates. Some 

mathematical examples with graphical representations are included in the description. The usage of coordinate 

geometry in game creation is covered in the second half of the paper. With the use of suitable graphs and 

examples, it describes how to use the slope formula, mid-point formula, and formula for equations of lines. Our 

study findings are mentioned in the report's conclusion, along with some of my own thoughts on the matter. 
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Objectives: 

1. To use coordinate geometry to determine distance. 

2. To study the use of coordinate geometry in the process of game designing. 

Limitations: 

1. The research is limited to the bounds of using coordinate geometry to determine the distances between 

various locations on a map using their coordinates. The map used for this research is a digitalized 

version of the political world map. 

2. The analysis of practical application of coordinate geometry in game designing is limited to adding 

figures, shapes and paths in a game screen within specified pixels.  

 

Introduction: 

Historical Background: The creation of analytic geometry, or geometry with coordinates and equations, was 

one of the most important events in the history of coordinate geometry. It was created by René Descartes (1596–

1650) who introduced rectangular coordinates to locate points and to enable lines and curves to be represented 

with algebraic equations. The distance formula is a major part of analytic geometry and in mathematics, the 

Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. 

It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore 
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occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians 

Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the 

Pythagorean theorem to distance calculation was not made until the 18th century. Thus, the distance formula 

was said to be discovered by the Greek mathematician Pythagoras. The distance formula is used to find the 

distance between two points in a coordinate plane. Since its discovery, the distance formula has been used to 

determine distances between earthly to celestial bodies. The use of distance formula in map making is a must. 

Since centuries, Cartographers have used analytic geometry, especially the distance formula to calculate the 

distance between various cities, countries and locations. Likewise, analytic geometry, also known as coordinate 

geometry, is used in video game design to create 3D and 2D models and environments. It helps game designers 

to create geometric objects on the coordinate plane and write linear equations for each side. The foundation of 

modern game development was laid after the implementation of coordinate geometry in the field. Developers 

used the basic theorems of coordinate geometry like the mid-point theorem, distance formula, slope formula 

and equation of a line to create various objects and maps in a game which has become the backbone of modern 

day gaming industry. 

Definitions: 

1. Coordinate geometry: Coordinate geometry is a branch of geometry that deals with the study of 

geometric figures using coordinate systems. It is also known as analytic geometry because it involves 

using algebraic equations to describe geometric objects. In coordinate geometry, geometric objects are 

represented using a coordinate system, which is a system of numbers used to uniquely identify points 

in space. The most common coordinate system used in two-dimensional space is the Cartesian 

coordinate system, which uses two perpendicular axes (x and y) to define a point on the plane. 

2. Distance formula: The distance formula in coordinate geometry is used to find the distance between 

two points in an XY plane1. The formula is derived from the Pythagorean theorem and is given by: 

d = √ ((x2 – x1) ² + (y2 – y1) ²) 

where d is the distance between two points (x1, y1) and (x2, y2). 

3. Slope: The slope of a line is a number that measures its "steepness", usually denoted by the letter m. It 

is the change in y for a unit change in x along the line. 

4. Equation of a line: The equation of a line in coordinate geometry is an algebraic form of representing 

the set of points that together form a line in a coordinate system. The numerous points that together 

form a line in the coordinate axis are represented as a set of variables x, y to form an algebraic equation, 

which is referred to as an equation of a line. The standard form of equation of a line is ax + by + c = 0. 

Here a, b are the coefficients, x, y are the variables, and c is the constant term. It is an equation of degree 

one with variables x and y. The values of x and y represent the coordinates of the point on the line 

represented in the coordinate plane. 

Theorems: 

1. Pythagoras Theorem: The Pythagorean theorem or Pythagoras' theorem is a fundamental relation in 

Euclidean geometry between the three sides of a right triangle. It states that “the area of the square 

whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the 

squares on the other two sides.” This theorem can be written as an equation relating the lengths of the 

sides p, b and the hypotenuse h, often called the Pythagorean equation: h2 = p2 + b2. 

 

2. Mid-point Theorem: In coordinate geometry, The Mid-point theorem states that "the midpoint of the 

line segment is an average of the endpoints." If (x1, y1) and (x2, y2) be the two endpoints then the 

coordinates of the mid-point (x, y) is given by: 

(x, y) = ((x1 + x2)/2, (y1 + y2)/2) 

 

 

Discussions: 

A. Use of coordinate geometry in measurement of distance between two locations on a map using 

their coordinates. 

 The following research has been conducted on the given topic: 
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I. Terms Used: 
1. Flat Map: A flat map is a two-dimensional representation of a three-dimensional object such 

as the Earth’s surface. Maps are much smaller in size compared to the actual area of the Earth’s 

surface they represent because of the use of scale. 

2. Scale: Scale is an essential geographic concept that refers to the ratio of distance on a map to 

the corresponding distance on the ground. 

3. Latitude: Latitude is a measurement on a globe or map of location north or south of the 

Equator. 

4. Longitude: Longitude is a measurement of location east or west of the prime meridian. The 

prime meridian is an imaginary line that runs from the North Pole to the South Pole through 

Greenwich, England. 

5. Coordinates: Coordinates of a location refer to the precise location of a point on Earth. The 

coordinates are always written with latitude first, followed by a comma and then its longitude. 

II. Theory of the research:  

In order to determine the distance between two locations on a map, the first order of business would be 

to determine their coordinates. This can be done through either manual test on a flat map by studying 

their latitudes and longitudes or through the use of internet tools like the Google Maps. After the 

coordinates are determined, the distance formula: 

d = √ ((x2 – x1) ² + (y2 – y1) ²) 

is used to calculate the distance between the two locations in a specific unit which varies from map to 

map due to their scaling. After the distance is calculated, it is then converted into the required 

measurement, i.e. either kilometer, miles, etc. by using the provided scale on the map. 

III. Examples: 
1. The coordinates of New York city are (40.730610, -73.935242) and that of Florence city is 

(41.29246,12.5736108). Use coordinate geometry to find the distance between these two cities. 

 The distance between these two cities can be calculated by initializing their coordinates as points on a 

coordinate plane and using the distance formula: 

d = √ ((x2 – x1) ² + (y2 – y1) ²) 

where (x1, y1) and (x2, y2) are the coordinates of the two points. 

 
 

Using the coordinates provided by the question, we can find the distance between New York city and 

Florence as follows:  

x1 = 40.730610 

y1 = -73.935242 

x2 = 41.29246 

y2 = 12.5736108 

Here, A represents the coordinates of New York while B represents the coordinates of Florence. 

d = √ [(41.29246 - 40.730610)2 + {12.5736108 - (-73.935242)}2] 

   = √ [(0.56185)2 + (86.5088528)2] 

   = √ (7485.365)  
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   ≈ 86.5 units. 

Therefore, the distance between New York City and Florence is approximately 86.5 units as per the given 

map coordinates.  

2. The coordinates for Los Angeles are (34.0522° N, 118.2437° W) and the coordinates for San Francisco 

are (37.7749° N, 122.4194° W). Use the distance formula to find the distance between these two cities.s 

 The distance between these two cities can be calculated by first initializing their coordinates as points 

on a coordinate plane. For this, we need to convert the coordinates to decimal form as: 

Los Angeles: (34.0522, -118.2437), San Francisco: (37.7749, -122.4194). 

 
 

Now, we use the distance formula: 

d = √ ((x2 – x1) ² + (y2 – y1) ²) 

where (x1, y1) and (x2, y2) are the coordinates of the two points. 

Using the coordinates provided by the question, we can find the distance between Los Angeles and San 

Francisco as follows: 

x1 = 34.0522 

y1 = -118.2437 

x2 = 37.7749  

y2 = -122.4194 

Here, A represents the coordinates of Los Angeles while B represents the coordinates of San Francisco. 

d = √ ((-122.4194 - (-118.2437)) ² + (37.7749 - 34.0522) ²)  

   = √ ((-4.1757) ² + 3.7227²)  

   = √ (17.4225 + 13.8531)  

   = √31.2756  

   ≈ 5.59 units. 

Therefore, the distance between Los Angeles and San Francisco is approximately 5.59 units as per the given 

map coordinates. 

B. Use of coordinate geometry in placing or creating various objects and paths for such objects in a 

game as a part of designing the game. 

 The following research has been conducted on the given topic: 

I. Terms used: 

1. Pixel: A pixel is a minute area of illumination on a display screen, one of many from which an image 

is composed. Pixels are combined to form a complete image, video, text or any visible thing on a 

computer display. A pixel is also known as a picture element and is the basic logical unit in digital 

graphics. 

2. Trajectory: Trajectory refers to the path followed by a projectile flying or an object moving under the 

action of given forces. Simply put, it is the path travelled by a body. 

3. Projectile: A projectile is any object thrown into space upon which the only acting force is gravity. The 

primary force acting on a projectile is gravity. This doesn’t necessarily mean that other forces do not 

act on it, just that their effect is minimal compared to gravity. 

4. Screen: A screen in a computer is a device with a viewing portion that displays the output of a computer 

to the user. It is used to view the ongoing as well as completed activities in a computer. 
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5. Ramp: A ramp is a sloping surface that connects two different levels. It is used to move objects from 

one level to another. 

II. Theory of the research: 

The use of coordinate geometry in game designing is a vast field with numerous applications. The most 

common uses of coordinate geometry in this sector are creating objects, shapes, marking the line of 

motion (trajectory) of such objects and so on. In order to create an object, we first need the information 

regarding the pixel of the screen and the object we want to create and display on the screen. On a graph, 

a pixel can represent a point or coordinate. For example, if we say that a rectangle is being created or 

drawn in a resolution of 500x400 pixels, i.e. the resolution of the screen and one of its vertices (say A) 

is at the origin, then its other vertex on the x-axis forming a line with A would be at the coordinate 

(500,0). This will become more clear through the mathematical examples presented after this section. 

After identifying the pixel (or coordinates) of the object we can use the various formulae included in 

coordinate geometry such as slope formula, formula for equation of line, mid-point formula, etc. to get 

the required result. 

III. Examples:  

1. Ram wants to create a circle of certain radius in the exact center of the screen which is rectangular. The 

resolution in which he is making the game is 600x400 pixels. Find the coordinates where he should 

place the center of the circle and draw it. 

 To find the coordinates of the center of the circle, first of all draw the computer screen and assign the 

coordinates of it vertices using the given pixels:  

 

 

Here, O (0,0), A (600,0), B (600,400) and C (0,400) are the coordinates of the screen with D (X, Y) 

being the center of the screen. Since, the screen is a rectangle the point D passes through one of the 

diagonals it is thus the mid-point of diagonal OB. Now, we can obtain the coordinates of point D by 

using the mid-point formula: 

Mid-point of a line segment joining two points (x1, y1) and (x2, y2) is given by: 

Midpoint = {(x1 + x2)/2, (y1 + y2)/2} 

In this case, the two points are (0, 0) and (600, 400). Therefore, we can use the mid-point formula to 

find the mid-point of the line segment joining these two points: 

(X, Y) = ((0 + 600)/2, (0 + 400)/2) 

          = (300, 200) 

Therefore, the midpoint of the line segment joining the points O (0, 0) and B (600, 400) is D (300, 200). 

Hence, the coordinates of the center of the circle is (300,200). 
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2. Suppose you want to create a ramp in a game that has a slope of 30 degrees and a length of 10 meters. 

Calculate the height of the ramp. 

 We know that the relation between slope, height and length of a line (here ramp) is given by: 

Slope = rise / run. 

Where rise is the height of the ramp and run is the length of the ramp. 

Since, we know that the slope is 30 degrees and the length of the ramp is 10 meters, we can use 

trigonometry to find the height of the ramp: 

tan (30) = rise / 10 

rise = 10 * tan (30) 

rise ≈ 5.7 meters 

So, to create a ramp with a slope of 30 degrees and a length of 10 meters, we would need to make it 

approximately 5.7 meters high. 

 
Here, ABC is the required ramp with length 10 meters and height nearly 5.7 meters. The scaling of this 

graph is presented below: 

For x-axis: 

   5 small boxes = 2 meters 

∴ 25 small boxes = 10 meters 

For y-axis: 

   5 small boxes = 2 meters 

∴ 14.25 small boxes = 5.7 meters. 

3. Rajesh is a game designer and he wants to create a game where an object moves along a straight line 

path from point A (0,0) to point B (10,10). Use the formula for equation of a line to determine the 

Trajectory of the object. 

 The trajectory of the object can be determined by the formula for equation of a straight line of degree 

one in x and y:  

y = mx + c ……………. (i) 

where m is the slope of the line and c is the y-intercept. 
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To find the slope of the line passing through points A and B, we can use: 

m = (y2 – y1) / (x2 – x1) ……………. (ii) 

where (x1, y1) = (0,0) 

and, (x2, y2) = (10,10) 

Then, from equation (ii): 

m = (10 - 0) / (10 - 0) 

∴ m = 1 ……………. (iii) 

So, from equations (i) and (iii), the equation of the line passing through points A and B is: 

y = x + 0 [Since, the straight line is passing though the origin.] 

or 

y = x  

This means that the path of the object will be along a straight line from point A to point B with a slope 

of 1. 

 

 
 

Conclusion: 

Findings: Through the course of this research, we found several new ways to use coordinates and apply 

the theorems and formulae of analytic geometry. To begin with, the fact that coordinates could be 

converted directly into decimal points was a pretty shocking revelation (as we always thought there was 

an elaborate pre-established set of steps to do so). We also found out the way to establish relation 

between a Cartesian graph and the directions (North, South, East and West). For example, we 

discovered that the direction North-East represented the first quadrant of a Cartesian graph while South-

West represented the third quadrant of the graph. Likewise, the serendipity of scale variation in multiple 

maps and their effects on the coordinates of a location along with its distance from another location on 

the same map was quite interesting.  

                Moreover, the application of coordinate geometry in the process of designing a game was 

very exhilarating to study. We found new ways to use the slope relation (through the concept of rise 

and run) and we also learned to derive the trajectory of any object based on only its coordinates on a 

graph. Beside these, the most interesting finding was the fact that we could actually divide a computer 

screen (which up until now we just thought to be a collection of VDUs) into several tiny fragments 

(pixels) and plot them on a graph. This meant that one could actually project an entire screen on a single 

Cartesian graph.  

    These findings led me to conclude that the impact of coordinate geometry on modern day technology 

and developments is quite dramatic. 

 

Remarks:  

 The use of distance formula in this project is limited to 2-dimensional plane. But this formula 

has already expanded to a higher dimension, i.e. 3-dimension. If we are able to somehow insert 

more axes in this formula, then the calculation of distance between objects in higher dimensions 
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could be possible which could even lead to major breakthroughs in the research of objects like 

wormhole and warp techniques. 

 Likewise, integration of gaming experience in this multi-dimension world has begun in the 

modern era. But the question remains, till what extent can we integrate the 2D (some 3D) world 

of gaming with the infinite possible coordinates of our real world. If, by some means, we are 

successful in integrating the virtual and real worlds through the intermixing of the coordinates 

of the two worlds, all those science fiction (sci-fi) movies and scenes would no longer remain 

a fiction.  
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