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Abstract: 

In this paper we define a new class of functions ( , , , )bM A B t   where functions in this class satisfy the 

condition ,

,

( ( ))1
1 1

( )

t

t

z G f z

b G f z





  
  

  

1 ( )
(1 )

1 ( )

Aw z

Bw z
 


 


, ( ( ) )w z E .where   denotes subordination,b  is 

any non zero complex number, A and B  are the arbitary constants 1 1B A    , (0 1)   , [ 1,1]t 

and 0  .Coefficient estimates, growth and distortion theorems for this class of functions are found. Radii 

of convexity, starlikeness, close-to-convexity and convex linear combinations are obtained for this class also. 
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1.Introduction: 

Let A denote the class of functions f   of the form  

2

( ) n

n

n

f z z a z




                                          (1.1) 

which are analytic in the open unit disk   𝐸 = {𝑧 ∈ 𝐸: |𝑧| < 1}. 
 

A function f   in the class A    is said to be in the class ( )ST   of starlike functions of order  in E , if it  

satisfy the inequality  

 

( )
Re ,

( )

zf z

f z


 
 

 
(0 1)  , ( )z E        (1.2) 

Note that  (0)ST ST  is the class of starlike functions. 

 

Denote by  T the subclass of A   consisting of functions  f  of the form  

                                      2
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  ( 0)na  .                                        (1.3) 

This subclass  was introduced  and extensively studied by  Silverman  [6]. 
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The class ( ), 0T     were introduced and investigated by Szynal [10] as the subclass of  A consisting of 

functions of the form 
1

1

( ) ( , ) ( )f z k z t d t


  .                                (1.4) 

where  

                            
2

( , )
(1 2 )

z
k z t

tz z 


 
[ 1,1]t  , ( )z E .                             (1.5) 

And    is a probality measure on the interval [ -1,1]. The collection of such measure on [a,b] is denoted by 

[ , ].a bP . 

The Taylor series expansion of the function in (1.5) gives  
2 3

1 2( , ) ( ) ( ) ...k z t z c t z c t z                   (1.6) 

 

And the coefficients for (1.6) were given below: 

0 ( ) 1,c t  1 ( ) 2c t t  , 
2

2 ( ) 2 ( 1)c t t      , 
3

3

4
( ) ( 1)( 2) 2 ( 1) ,...

3
c t t t          (1.7)  

 

Where  ( )nc t
 denotes the Gegenbauer polynomial of degree .n  Varying the parameter   in (1.6), we obtain 

the class of typically real functions studied by [1],[4], [5], [9] and [12].     

 For   
2
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   , the Hadamard product of   f  and    g  is defined by  
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   ,   ( )z E . 

Let , :tG A A   defined in terms of the convolution by  

, ( ) ( , ) ( )tG f z k z t f z   ,We have    
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In this paper we define a new class of functions ( , , , )bM A B t   where functions in this class satisfy the 

condition 
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, ( ( ) )w z E .  (1.9) 

 

where   denotes subordination , b  is any non zero complex number, A and B  arethe arbitary constants

1 1B A     , (0 1)   , [ 1,1]t   and 0  .Coefficient estimates growth and distortion 

theorems , radii of convexity, starlikeness ,close-to-convexityand  convex linear combinations are  obtained 

for this class. 

 

2.Coefficient Estimates 

Theorem 1. A necessary and sufficient condition for a function f T  to be in the class ( , , , )bf M A B t  is    
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Proof. By definition of subordination , we can write (1.9) as 
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From (1.11) , we obtain 
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Letting 1z   , we have 
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Conversely, let (1.10) be true. From (1.11), we see that  ( ) 1w z  , 
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Then, we need to prove that (1.12) is true. By applyingthe hypothesis (110) and letting   

1z  , we find that 
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Hence, we find that (18) is true. T herefore ( , , , )bf M A B t  . 

Our assertation in Theorem 1 is sharp for functions of the form 
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 3. Distortion Theorems 

Theorem 2. If  ( , , , )bf M A B t  ,then 
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with the equality for 
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Proof. From (1.10),we obtain 
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From (1.10) and (1.15) it follows that 

2

2 2

( )
n

n n

n n

f z z a z r r a
 

 

     
  

  
2

1

1

1 1 ( )n

b A B
r r

b A B B t



  

   
  

       

 

 

In the same manner, 
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Hence the theorem. 

 

Theorem 3.If  ( , , , )bf M A B t   then 
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From (1.17),it follows that 

1

2 2

( ) 1 1
n

n n

n n

f z n a z r n a
 



 

     
 


  

   1

2 1
1

1 1 ( )n

b A B
r

b A B B t



  

   
  

       

 

 

Similary,  

1

2 2

( ) 1 1
n

n n

n n

f z n a z r n a
 



 

     
 

  

   1

2 1
1

1 1 ( )n

b A B
r

b A B B t



  

   
   

       

 



DOI : https://doi.org/10.56452/02 
 

Copyrights @Kalahari Journals Vol. 8 No. 3 (March, 2023) 

International Journal of Mechanical Engineering 

15 

 

4.Radii of Close-to-Convexity,Starlikeness and Convexity 

A function f T is said to be close-to- convex of order (0 1)   , if 

 

 Re ( )f z    ,             (1.18) 

for all z E . 

 

A function f T  is said to be starlike of order (0 1)   if 
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.                    (1.19) 

 

A function f T  is said to be convex of order (0 1)   if and only if ( )zf z  is starlike of order   that 

is if  
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Theorem 4. If ( , , )bf M A B  , then f  is close-to-convexity of order  in 1 1( , , , , , )z r A B b    , 

where 
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The result is sharp for the function ( )nf z  given by (1.13). 

 

Proof. It is sufficient to sufficient to show that  
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By (1.10), we have  
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solving (1.23) for z ,we obtain 
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Theorem 5.If  ( , , , )bf M A B t  ,then  f  is starlike of order    in 2( , , , , , )r A B b      where  
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The result is sharp for the function ( )nf z  is given by (1.13). 

 

Proof.We must show that  
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We see from (1.22) that (1.24) is true if  
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solving (1.25) for z , we obtain 
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Hence the theorem proved. 

 

Theorem 6.If  ( , , , )bf M A B t  ,then  f  is convex of order   in 3( , , , , )z r A B b    

where  
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The result is sharp for the function  ( )nf z  is given by (1.13). 

 

Proof. We must show that  
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From(1.22) ,we see that(1.26)is true if  
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Solving (1.27)  for z , we obtain  
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Hence the theorem is proved. 

 

5.Convex Linear Combination 

We give the result of convex linear combinations as follows: 
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Then  ( , , )bf M A B    if and only if it can be expressed in the form 
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Proof. From (1.30) , it is easy to see that  
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It follows  from Theorem 1 that the function ( , , )bf M A B  . 
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Setting  
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 .This completes the proof of the  theorem. 

 

Theorem 8.The class ( , , , )bM A B t   is closed under convex linear combinations. 

Proof. Suppose the functions  1( )f z  and   2( )f z defined  by  

,
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  ,( 0, 1,2; )n ja j z E                                (1.32) 
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We find from (1.27) that  
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( )(1 ) (1 ) ( )(1 ) ( )(1 )b A B b A B b A B              . 

 

This completes the proof of the theorem. 
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