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Abstract: 

Initial value problems are used to look into the development of linearized perturbations in a 

magnetohydrodynamic bounded couette flow. The Fourier transform is applied to a point 

source of transverse velocity and magnetic field to get an equation in time that is then solved 

for the Fourier amplitudes. For small amounts of neAlfv   velocity, perturbation solutions may 

be found. The velocity and magnetic field plots are drawn for different values of neAlfv   

velocity. 
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Introduction 
Astrophysicists and geophysicists are both interested in the stability of shear flow that 

conducts electricity. "The study of the stability of such flows is crucial to our capacity to deduce 

the nature of physical processes in the universe as a whole. 

Afroja Parvin et al.[1] looked into the effects of Hall current on a conducting, viscous, 

incompressible fluid wedged between two parallel, non-conducting surfaces.Both the fluid 

velocity and the magnetic field are constant and perpendicular to the top plate. The top plate is 

moving at a steady speed while the bottom plate is fixed. Using the implicit finite difference 

method, they solved the governing non-linear coupled partial differential equations that were 

produced. In the presence of a transverse magnetic field, Muhim Chutia et al.[6] investigated 

numerically the unsteady hydromagnetic couette flow of a viscous, incompressible, and 

electrically conducting fluid in a rotating system between two infinitely long parallel porous 

plates. The study of stability of a simple shear flow of an incompressible fluid with a piecewise 

linear velocity profilethe influence of  magnetic field was published by Ruderman and Brevdo 

[7]. A transitional magnetic-free layer is sandwiched between two semi-infinite areas in the 

flow. They came to the conclusion that the strength of the interstellar magnetic field needed to 

stabilise this section of the heliopause is one order of magnitude higher when a transitional 

layer is included in the model compared to when the heliopause is modelled as a tangential 

discontinuity. 

By assuming a uniform mean magnetic field, Stuart [8] studied the stability of 

Poiseuille flow in a flat plane. The effect of a coplanar magnetic field on the equilibrium of a 
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conducting fluid moving between parallel planes was investigated by Hains[3]. Numerical 

results were obtained for the scenario when the initial perturbations to the magnetic field 

disappear, following the derivation of the general stability equation for small magnetic 

Reynolds number. When a homogeneous magnetic field is oriented perpendicular to the flow 

and of appropriate strength, Hunt [4] shown that the most unstable disturbance has a wave 

number vector that is not perpendicular to the flow, indicating that it exists in three 

dimensions. For unbounded plane couette flow, Lerner and Knobloch [5] used the separation 

of variables approach to investigate the stability of dissipative magnetohydrodynamic shear 

flow in a parallel magnetic field. Both the molecular viscosity and the finite conductivity were 

shown to be stabilising factors.  In their work on the development of general three-dimensional 

perturbations in a magnetohydrodynamic couette flow, Vijayalakshmi and Balagondar [9] 

found graphically that for varying values of Alfven velocity, the behaviour of the total energy 

and the sum of the first five components of energy are qualitatively similar. Researchers Zakir 

Hussain et al. [10] found that a transverse magnetic field of a certain magnitude destabilises 

Couette flow, while a field of a different magnitude stabilises the flow when applied to an 

electrically conducting fluid in a magnetohydrodynamic flow between parallel plates using 

the Chebyshev collocation method. 

This research is an extension of work by Criminale and Drazin [2] to 

magnetohydrodynamic couette flow with velocity and magnetic field pulse. As a function of 

all space variables and time, the full general solution to the linearized equations of motion is 

found. Rotational and irrotational aspects of the disturbances are separated. Because the mean 

flow is unbounded yet corresponds with the actual flow in the layer, the rotational solution is 

the answer to the hypothetical initial-value issue. When the boundary conditions and the 

interfacial conditions at a wall are met, a unique irrotational solution is defined for each layer. 

 

Mathematical Formulation 
We consider an electrically conducting fluid of density , moving with velocity q


 in the 

presence of a magnetic field H


. Gravity is ignored. For a fluid that really is incompressible, 

inviscid, magnetohydrodynamic, and Boussinesq, the governing equations are 

0 q. 


,                                                               (1) 

0 H. 


,         (2) 

   H .H
m

μP-q .q
t

q
 ρ

















,         (3) 

    q  .HH .q
t

H 






,         (4) 

where 
2

2H
m

μ
pP   is the total pressure, 

m
μ is the magnetic permeability. 

The ambient state of  the system  is  

  0) 0, σy,  y (U
0

q 


, ,0,0)
0

(H
0

H 


, (y)
0

P P                     (5) 

where  represents the mean shear of the flow. It is assumed that  and H0 are constants. In 

the theory of linear stability, we disrupt the mean flow by a small bit, like a wave, and then 

superimpose this new flow over mean flow. 

q
0

q q 


,  H
0

HH

 ,  P

0
PP  ,                                    (6) 
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where q


,  H

 ,  P  are the variables that experienced a change in velocity, magnetic field, 

and pressure. 

By (i) using a transformation based on shifting coordinates, 

T   t,  ξ  x  - σ y t,  η y,   ζ z                                                (7) 

      (ii) using three - dimensional Fourier transformation given by 

    ζd dηξd
ζγ βηξαi

eT;ζ;η;ξuT;γ;β;αû







 












                      (8) 

 with similar expressions for v̂ , ŵ , xĤ , yĤ , zĤ  and P̂ (iii) making use of Squire 

transformation defined by   2
1

2γ2αα   and φ  = arctan  α
γ , the velocity and magnetic 

field components in the α  and φ  directions are given by 

α

ŵγûα
u


 ,

α

ŵαûγ
w,


 ,

α

zĤγxĤα
xH




α

zĤαxĤγ
zH


 .                (9) 

 The linearized equations of motion with Boussinesq approximation and omitting the primes 

becomes 

  0 yĤ 2K 2
A

V iαv̂2K
dT

d
                                       (10) 

v̂αi
Td

yĤd
 .                                                   (11) 

 where  

0
ρ

2
0

H
m

μ
2
A

V  , 
A

V is the neAlfv   velocity, 
0

ρ  is the equilibrium density. 

 2σαTβ2α2K  and  2γ2α2α  . 

By taking the divergence of the momentum equations, it is found that the pressure amplitude 

2K

 v̂ α σ i2
P̂


 when 02K  . Equation (10) admits two sets of solutions for v̂ , first, for 02K 

, when the disturbance is rotational and second for 02K  , when the disturbance is irrotational 

as the vanishing of the product 2ˆK v  is equivalent to Laplace equation 0v̂2  in real space. 

But for yĤ  solution exists for only 02K  , since for 02K  , 0
y

Ĥ2K   corresponds to 

0
y

Ĥ2  which is equivalent to 0Hx 


 and 0H. 


, which implies that H


is force free 

magnetic field i,e., there is no magnetic field. Hence 0
y

Ĥ2   which corresponds to 

irrotational solution, is not taken into account. 

Now considering the case 02K  , we assume perturbation solution for 
R

v̂ , the 

rotational component of  v̂ for small values of 
2
A

V  elocityvn eAlfv   in the form 

          ...Tγ,β,α,
2

v̂ 
22

A
VTγ,β,α,

1
v̂ 2

A
VTγ,β,α,

0
v̂Tγ,β,α,

R
v̂                  (12) 

        ...Tγ,β,α,
2yĤ 

2
2
A

VTγ,β,α,
1yĤ 2

A
VTγ,β,α,

0yĤTγ,β,α,yĤ 




             (13) 
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We find that 

 
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,          (16) 

In the case of 
2K = 0, we apply the two-dimensional Fourier transform to the perturbation 

equations. 

Using moving co-ordinate transformation, 
2ˆK v 0  corresponds to  

  0
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
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,                          (17) 

   
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,           (18) 

is the irrotational part of  v. Equation (17), when solved, gives 

    αTη iσηα
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I
v



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


.                              (19) 

  where the constants of integration, A(T) and B(T), are being used. 
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In order to combine R
v̂  and I

v


 to obtain the complete solution and satisfy the 

matching condition R
v̂ must be inverted once to obtain  Tγ;η,α,

R
v


i,e., 

    dβ
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R
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1
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R
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





.          (20) 

The initial velocity and initial magnetic field are given by  
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 Coordinate transformation and Fourier transform in three dimensions gives 
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R
v


is found to be 
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Now the complete solution will be  

I
v

R
vv


 .                                                                         (26) 

R
v


and I
v


 are given by  equations (25) and (19). 

 

Magnetohydrodynamic bounded  plane couette  flow  

Here, we focus on the example of a magnetohydrodynamic couette flow in a flat plane as in 

Fig.1. Here velocity v


 vanishes at Hη  , hence we have  

                           
αH iσαTH αH iσαTH

e A e B v
R η H

      
  

                              (27)               

                           
αH iσαTH αH iσαTH
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R η H

      
  

                                 (28) 

From equations (27) and (28), A and B are found to be  
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   
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R
v

αTHiσHα
e H

R
v

B











. (30) 

where     
H ηR

vH
R

v





. 

 

It is found that 

 
 i αx γz σαT H - y

0 0 0
v H A  e

R 1

 
 
 
 

 
  . (31) 

  
 i αx γz σαT H - y

0 0 0
v H A  e

R 2

 
 
 
 

 
  . 

(32) 

A v A v
R R1 2y , ( y )

0 0
H H 

 
   

 

 

 

 

  



DOI : https://doi.org/10.56452/6-1-27 

Copyrights @Kalahari Journals  Vol.6 No.1 June, 2021 

International Journal of Mechanical Engineering 

208 

Results and Discussion 

 

 
Using a unit pulse of velocity and magnetic field as starting distributions, we have investigated 

the development of linearized perturbations in a bounded couette flow subject to inviscid 

magnetohydrodynamics". We have separated the rotational and irrotational parts of the 

perturbations. Plots are drawn to observe the variation of amplitude of rotational velocity R
v̂  

and magnetic field 
y

Ĥ with time.  
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Figs.2 (a)-(d) are plots of R
v̂ versus T for different values of 

A
V (

A
V = 0, 0.2, 0.5) and             

φ ( 0,180090 ,045 ,00φ  ). For 0 0 0φ 0 , 45 ,180 as time increases there is decay in R
v̂ . 

Figs. 3 (a)-(d)   are plots of 
y

Ĥ  versus T for different values of 
A

V  and for different values 

of φ  ( 0,180090 ,045 ,00φ  ). At 0 0 0φ 0 , 45 ,180 , we see that with an increase in 
A

V , 

y
Ĥ decays with time. At  

0φ 90  there is no variation in velocity and magnetic field with 

time 
 

Conclusions 

Graphically it is found that as time elapses the perturbations die down and makes the flow 

stable. But for 
0φ 90  the perturbations neither dies down nor grows. This happens in the case 

of bounded flows where the boundaries are placed far away from each other (like oceans) which 

may lead to natural disasters. When there is no magnetic field present, these findings correlate 

well with those of Criminale and Drazin [2]. 
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