
Copyrights @Kalahari Journals      Vol.7 No.12 (December, 2022)  

International Journal of Mechanical Engineering  

259  

ISSN: 0974-5823    Vol. 7 No. 12 December, 2022 

International Journal of Mechanical Engineering 

STUDY OF THERMAL INSTABILITY OF A 

MICROPOLAR FLUID WITH COUPLE-

STRESS HEATED FROM BELOW 
Sudhir Kumar Pundir, Rimple Pundir, Shivam Aggarwal 

Department of Mathematics, S.D. (P.G.) College, Muzaffarnagar,  

Uttar Pradesh, 251001, India 

Corresponding Author Email: 2033shivam@gmail.com 

 

ABSTRACT 

This paper discusses the issue of thermal convection in a micropolar fluid with couple-stress that saturates a 

porous medium. We perform a linear stability analysis and normal mode analysis to determine the dispersion 

relation. Using analytical and graphical methods, they determine the critical Rayleigh number for instability 

onset. We find that, for stationary convection, various factors such as couple-stress, coupling, medium 

permeability, and heat flux can have stabilizing or destabilizing effects depending on specific conditions. We 

also observe the principle of exchange of stabilities to be valid in certain scenarios 
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INTRODUCTION 

The concept of micropolar fluids was introduced by Eringen in 1964 to account for systems that cannot be 

accurately described by the Navier-Stokes equation. Micropolar fluids belong to the category of microfluids, 

which exhibit micro-rotational inertia. Examples of such fluids include colloidal solutions, liquid crystals, and 

animal blood. In addition to the velocity vector, micropolar fluids have two extra variables: the micro-inertia 

tensor and the spin vector. The spin vector is responsible for micro-rotation, while the micro-inertia tensor 

creates disturbances in the molecules within the fluid elements. The theory of micropolar fluids was further 

developed by Kazakia and Ariman in 1971. 

Micropolar fluid instability problems have gained significant attention in current research. Shukla and Isa (1975) 

and Chandrashekhar (1981) are prominent scholars in the field of micropolar theory. Rayleigh-Benard 

instability in a horizontal thin layer of micropolar fluid has become a well-known stability problem. 

Chandrashekhar (1981) extensively studied thermal convection in a horizontal thin layer of Newtonian fluid, 

taking into account the effects of hydrodynamics and hydromagnetics. The book by Gezegorz (1999) provides 

a wide range of applications and modeling factors of micropolar fluids. Ariman's (1973) review paper offers 

further research and important discussions on micropolar fluids with microstructures. 

Researchers have studied the impact of microstructures on Rayleigh-Benard instability, and they have found 

that the principle of exchange of instabilities remains valid when there is no coupling between thermal and 

micropolar effects. However, Perez and other researchers have shown that this principle may not hold true when 

there is coupling between these effects. Bradley and Lekkerkerker in 1978 have demonstrated the existence of 

oscillatory motions in micropolar fluids in dielectric fluid and liquid crystal, respectively. 

 

Micropolar fluids have emerged as a crucial area of study not only in engineering, but also in various industries 

such as food processing, chemical processing, and metal solidification. As a result, the understanding and 

exploration of micropolar fluids has become an essential component of modern technology and industrial 



Copyrights @Kalahari Journals      Vol.7 No.12 (December, 2022)  

International Journal of Mechanical Engineering  

260  

development. Researchers have emphasized the significance of investigating the behavior of these fluids in the 

presence of porous mediums. Moreover, the micropolar theory has proven to be highly valuable in the field of 

engineering and various branches of mathematics. 

 

The study of micropolar fluid stability has been a subject of interest for numerous scholars and authors, such as 

Kaloni and Qin (1992). To analyze the behavior of fluids in porous media with very low permeability, a 

generalized Darcy's Walter model has been used, which takes into account the impact of inertial forces. 

The concept of couple-stress fluid, introduced by Stokes in 1966, has found numerous applications in 

understanding the mechanics of synovial joints, which is a prominent area of research. Synovial joints present 

in the human body, such as those in the knee, hip, shoulder, and ankle, contain normal synovial fluid that is 

viscous and non-Newtonian in nature. As a result of its negligible wear and low friction coefficient, the use of 

couple-stress fluid has been proposed as a viable model for synovial fluid in these joints. This proposal was first 

suggested by Walicki and Walicka in 1999. 

The impact of couple-stress fluid has been a topic of investigation by various researchers. For instance, Kumar 

et al. (2010) delved into the behavior of a couple-stress fluid heated from below in hydromagnetics, while Stokes 

et al. (1969) studied the effects of couple-stresses on heat transfer in fluids. 

The exploration of couple-stress fluids in various conditions continues to be an active area of research. For 

example, Kumar et al. (2020) investigated the thermal instability of a rotating couple-stress ferromagnetic fluid 

in the presence of a variable gravity field, while Nadian et al. (2021) examined double-diffusive convection in 

a rotating couple-stress ferromagnetic fluid subjected to varying gravitational and horizontal magnetic fields, 

with a porous medium present. 

To date, the issue of thermal convection in a couple-stress micropolar fluid that is saturating in a porous medium 

has not been explored, based on our current knowledge. As a result, this paper aims to address this instability 

problem. 

FORMULATION OF PROBLEM 

Our study examines a layer of incompressible couple-stress micropolar fluid with a thickness d that is confined 

between two horizontal planes located at z=0 and z=d in a porous medium. The layer is initially at rest and 

heated from below. Convection occurs when a critical temperature gradient  =     is exceeded, which 

depends on the boundary conditions and bulk properties of the fluid. Prior to reaching the critical gradient, the 

fluid remains stationary. 

 

Governing equations for the motion of couple-stress micropolar fluid situated in porous medium following 

Boussinesq approximation are as follows: 

Continuity equation 

              (1) 

Momentum equation 
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          (2) 

Angular momentum equation  

         (3) 

Temperature equation 

        (4) 

Where v and T are used for velocity and temperature ;  and  are used for spin and total density ;  and  are 

used for solid matrix density and reference density ;  and  are used for medium permeability and medium 

porosity ; g and  are used for gravity acceleration and viscosity coefficient ; p and  are used for thermodynamic 

pressure and unit vector in z-direction ; j and  are used for microinertia constant and bulk spin viscosity 

constant ;  and  are used micropolar viscosity constant and shear spin viscosity constant ;  and  are used 

for coupling viscosity constant and kinematics viscosity ;  is used for couple stress viscosity. Also, in 

temperature equation, 

,  are used for heat of solid (porous matrix) material and specific heat at constant volume;  ,  are used for 

thermal conductivity and micropolar heat conduction constant. 

Basic state equation is, 

            (5) 

Where  is used for constant of thermal expansion and  is used for average temperature as T= , where 

 are constant temperatures at lower and upper boundary of fluid layer. 

In the basic state, when fluid is at rest, 

v =  = (0,0,0),  = (0,0, ) , T =  = (0,0,0) , p =  = (0,0,0) ,  = (0,0,0) 

By (2)  

 

             (6) 

By (4) 

 

 T =            (7) 

Where  

By (5) 

          (8) 

 

PERTURBATION EQUATIONS 

We consider small perturbation for stability around basic state. The basic state is  

v =  ,  , p =  ,  , T =  

where  ,  ,  ,  ,  are used for perturbation in velocity v, spin  , pressure p, density  , 

temperature T respectively. Equation (1) – (5) after perturbation are, 

              (9) 
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                          (10) 

                      (11) 

                         (12) 

            (13) 

On putting,  ,  ,  , u =  ,  , p =  in equation (9) - (13) and removing 

stars for convenience. We get non-dimensional equations as, 

 = 0                               

(14) 

                    (15) 

                                     

(16) 

                      (17) 

where new non-dimensional coefficient are,  

  ,    ,    ,    ,   

  ,    ,   

    ,   

Here R = Rayleigh number and P = Prandtl number. 

 

LINEAR THEORY AND DISPERSION RELATION 

In linear stability we only consider the linear term and due to very small disturbance the non-linear term in 

(14) – (17) namely  ,  ,  ,   may be neglected. 

Apply curl operator twice on (15) and take only z-component, then linearized form of (15) is  

                       (18) 

Where  consider only z-components 

Apply curl operator once on (16) and take only z-component, then linearized form of (16) is 

  

Where K use for coupling between vorticity and spin effects and  use for spin diffusion. 

Now, linearized form of (17) is 

                     (20) 
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NORMAL MODE ANALYSIS 

By normal mode method we assume solution of equation (18) - (20) are  

                (21) 

Now we consider  , k is wave number and (complex number in general) is stability parameter  

After use of (21) equation (18) – (20) become, 

                (22) 

                  (23) 

                                  (24) 

Where  ,  ,  ,  ,   

Now on eliminating G and  between (22) – (24), we get, 

             (25) 

Now boundary condition transforms to 

 ,  at z = 0 and 1                           (26) 

For proper solution of U characterizing lowest mode is 

                         (27) 

where  is constant. 

Put value of U by (27) in (25) and also put  then we get  

                                  (28) 

 

ANALYTICAL DISCUSSION 

(i)Stationary convection 

At stationary convection, when stability sets, the marginal state will be characterized by . So, put 

 in (28), we get 

 

                    (29) 

This relation is in Rayleigh Number R as a function of parameters K(coupling), B(couple-stress),  

(permeability) and (heat flux). 

For behavior of couple stress(B), we find  

                       (30) 

                  

So, Couple-stress has a destabilizing effect on the system under the condition 
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. 

For behavior of coupling(K), we find   

          (31) 

So, Coupling has a stabilizing effect on the system under the condition 

   and   .                             

On the other hand, coupling has a destabilizing effect on system under condition 

   and   A=0.                   

For behavior of permeability ( ) we find  

          (32) 

So, Permeability has a stabilizing effect on the system under the condition 

A=0   and   .                   

On the other hand, permeability has a destabilizing effect under the condition 

.                    

For behavior of heat flux( ) we find  

                  (33) 

So, heat flux has a stabilizing effect on the system under the condition 

   and   .                   

(ii)Oscillatory mode 

Equation (22) (conjugate of U) and integrate with the range of z after that use equation (23)  and (24)

 with boundary conditions (26), we get 

                        (34) 

Where 

 

 

 

All these integral from  to  are positive definite. 

Now put  in equation (34) and on taking imaginary part , we get 

 

                      (35) 
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We have taken (35) positive definite in the absence of coupling between spin and heat flux because  

are all positive definite. So, .Therefore oscillatory modes are not allowed and principle of exchange of 

stabilities is satisfied for the problem. 

 

NUMERICAL COMPUTATIONS 

 

 

Fig. No. : 1 

Variation of Rayleigh number and couple-stress(B) for 

A=-60, =50,k=4, =4, M=45, K=23 ( =-125,-100,-107) 

(Destabilizing effect) 

 

Fig. No. : 2 

Variation of Rayleigh number and coupling(K) for 

A=60, =40, =-110, k=2, M=60, B=35 (  = 0.4 , 3 , 4 ) 

(Stabilizing effect) 
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Fig. no. : 3 

Variation of Rayleigh number and coupling(K) for 

A=0, =-30, =130, k=3,  M=20, B=40 (  = -2 , -2.5 , -4) 

(Destabilizing effect) 

 

 

Fig. no. : 4 

Variation of Rayleigh number and permeability( )for 

A=-40, =-20, k=1, M=20, K=4,B=80( =-120,-110,-128) 

(Destabilizing effect) 
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Fig. no. : 5 

Variation of Rayleigh number and permeability( ) for 

 A=0, =-30, k=1, M=50, B=60, =-110 (K= -3, -2.7, -6) 

     (Stabilizing effect) 

 

 

         Fig. No. : 6 

Variation of Rayleigh number and heat flux( ) for  

A=-60, k=, M=60, B=70, K=0, U=-2 (  = -122 , -110 , -145)  

     (Stabilizing effect) 
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