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Abstract-  

 

The interacting boson model-1 has been used to calculate the reduced electric transition probability B(E2) ↓ of even-even 
114-118Cd nuclei with even neutrons from N = 66 to 70. The three-three boson interactions are also formed in the Hamiltonian 

from Casimir invariant operators. The parameters of best fit to measure the data is used from the experimental value of B 

(E2; 21
+ → 01

+). The theoretical values are good in agreement especially with the experimental ones. The branching ratios B 

(E2; 41
+ → 21

+) / B (E2; 21
+ → 01

+) is less than 2 represents U (5) symmetry in 114-118Cd nuclei. 
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INTRODUCTION 

 

The IBM is explained in detail, with a focus on the variant of the model that involves higher-order interactions between the bosons. 

A full account of the IBM is given by Iachello and Arima (1974) [1]-[6]. The nucleus is represented in the IBM in terms of interacting 

s and d bosons. The vibrational U (5) limit, the rotational SU (3) limit, and the γ-unstable SO (6) limit are three separate types of 

analytical solutions or limits for such a device.  

While the vibrational and rotational limits were well-known aspects of the nuclear environment at the time of the IBM introduction 

in 1974, the third limit was not. Its predictions were found to match the empirical structure of some Pt nuclei very closely. 

Supersymmetry is the IBM second major contribution to nuclear physics [7].  

      The main objective of this research is to investigate 114-118Cd nuclei transitional nuclei for the calculations of B(E2) reduced 

transition probabilities within framework of IBM-1 with the help of Casimir invariant operators. 

 

THEORETICAL CONSIDERATION 

 

One assumes that low-lying collective quadrupole states can be generated as states of a system of N bosons able to occupy two 

levels, one with the angular momentum J = 0, called s, and one with angular momentum J = 2, called d boson [8-9]. The number N 

is the total number of active nucleon pairs.  

If the bosons were independent of one another, a system of ns s-bosons and nd d-bosons would have the energy nsɛs + ndɛd. 

     For the interaction between the active bosons take two boson operators for the Hamiltonian such as 

½∑1=i<j
N W (ij) = W  

 

       W =½∑lf lg lp lq, J=even< lf lg J | w | lp lq J > √ (2J + 1).  
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                [[b†
f × b†

g] (J) × [b~
p × b~

q] (J)] (0)    (1) 

Take three boson operators for the Hamiltonian for the interaction between the active bosons, such as 

D = ½ ∑lf, lg, lp, lq, lh, li, J=even < lf lg lh J | D| lp lq li > √2J +1.    {[[b†
f × b†

g] (J0) × b†
h] (J) × [[b~

p × b~
q] (J0) × b~

i] (J)]} (0) (2) 

A Hamiltonian that conserves the total number of bosons is of the generic form [10] 

Ĥ = E0 + Ĥ
 (1) 

+ Ĥ
 (2) 

+ Ĥ
 (3) 

+…...  (3) 

Where the index refers to the order of the interaction in the generators of U (6). The first term E0 is a constant which 

represents the binding energy of the core. 

The most general Hamiltonian containing one-, two-, three-body terms can be written as 

 

H = ɛs N + (ɛd - ɛs) nd + ½ ∑J=0,2,4 CJ √ (2J + 1) 

 

                        [[d † × d †] (J) × [d~ × d~] (J)] (0) +  

 

      √(½) v2 ([[d † × d†] (2) × d~ s] (0) +  

 

                                   [s†d† × [d~ × d~] (2)] (0)) +  

 

          ½ v0 ([[d † × d †] (0) × ss] (0) +  

 

                                   [s†s† × [d~ × d~] (0)] (0)) + 

 

           u2 [d †s† × d~ s] (0) + ½ u0 [s†s† × ss] (0) +  

 

     √5/2 A2 ({[d† × d†] (2) × [d~ × d~] (2)} (0) ×  

 

                                          {[d† ×   d~] (2)} (0)) +  

 

    √5/2 B2 ({[d† × d†] (2) × [d~ × d~] (2)} (0)  

 

                                      × {[s†s + ss†] (2)} (0)) + 

 

      p2 ({[d† × d†] (2) × [d~ × d~] (2)} (0) ×  

 

                                       {[d†s + s†d~] (2)} (0)) + 

 

     1/2 p0 [({[d† × d†] (2) × [s~ × s~] (2)} (0) ×  

 

                     {[d†s] (2)} (0)) +({[s† × s†] (2) × 

 

                   [d~ × d~] (2)} (0) × {[d~s†] (2)} (0))] + 

 

 q2 ({[d† × d†] (2) × [d~ × d~] (2)} (0) ×{[s†s] (2)} (0)) +  

 

 √5 D2 ({[s† × s†] (2) × [s~ × s~] (2)} (0) ×  

 

                                           {[d† × d~] (2)} (0)) + 

 

  1/2 q0 {[s†s†s† × s~ s~ s~] (2)} (0) +  

 

   r0 ({[s†s† × s~s~] (2)} (0) × {[s†d~ + d† s~] (2)} (0)) + 

 

   r2 [({[d† × d†] (2) × [s~ × s~] (2)} (0) ×  

 



 

Copyrights @Kalahari Journals  Vol. 7 No. 1(January, 2022) 

 International Journal of Mechanical Engineering  

 

2089 

              {[s†d~] (2)} (0)) + ({[s† × s†] (2) × 

 

             [d~ × d~] (2)} (0) × {[d†s~] (2)} (0))]         (4) 

The IBM-1 Hamiltonian (4) can be expressed as a linear combination of the U (6) [11] and its subgroups linear and quadratic Casimir 

operators. 

H = a1 C1,U(5) + a1
ˈC2,U(5) + a2 C1,U(6) + a2

ˈC2,U(6) + a3 C1,U(6) C1,U(5) + a4 C2,SO(5) + a5 C2,SO(3) + a6   C2,SO(6) + a7 C2,SU(3) + b1[C1,U(5)]3 + b2 

C2,SO(5)    C1,U(5) + b2
ˈ C2,SO(3) C1,U(5) + b3 C2,U(6) C1,U(6) + b4 C1,U(6) C2,U(5) + b5 C2,SO(5) C1,U(6) + b6 C2,SO(3) C1,U(6) + b7 [C1,U(6)]3                            

(5) 

The Casimir invariant operators of U (6) and its subgroups in the pattern are given below: 

C1, U (6) = N, C1, U (5) = nd, C2, U (5) = nd (nd + 4), C2, U (6) = N (N + 5),   

C2, SO (6) = N (N + 4) – {√5 [d† × d†] (0) - s†s†} {√5 [d~ × d~] (0) – ss} 

C2, SO (5) = nd (nd + 3) – 5 {[d† × d†] (0) [d~ × d~] (0)} 

C2, SO (3) = -10√3 {[d† × d~] (1) × [d† × d~] (1)} 

C2, SU (3) = ∑μ (-1) μ Qμ Q-μ, Where Qμ = {dμ
† s~ + s† dμ

~ - √7/2 [ d† × d~] μ
 (2)} 

Transition operators are associated with the IBM-calculated collective states. The number of bosons must be conserved because the 

B(E2) transition operator must be a Hermitian tensor of rank two. Because there are only two operators that can be used in the 

lowest order with these constraints, the general E2 operator can be written as [12] 

Tm(E2) = α2 [s† d~ + d† s] (2)
m + β2 [d† × d~] (2)

m                                    (6) 

where α2 plays the role of the effective boson charge and β2 = √7/2 α2. The BE (2) strength for the E2 transitions is given by 

B (E2; Li→Lf) = 1/ (2Li + 1)1/2 |< Lf || Tm(E2) ||Li>|2                         (7) 

The reduced transition probabilities in IBM-1 are given for the limit U (5)-O (6) [13]. 

     B (E2; L + 2 → L) ↓ = 1/4 α2
2 (L + 2) (2N – L)                    (8) 

where L is the state that nucleus translate to and N is the boson number, which is equal to half the number of valence nucleons. 

From the given experimental value of transition (2+ → 0+), one can calculate the parameter α2
2 for each isotope, where α2

2 indicates 

the square of the effective charge. This value is used to calculate the transition 8+ to 6+, 6+ to 4+, 4+ to 2+ and 2+ to 0+. The value of 

B(E2) in units of e2 b2, is related to B(E2) in units of Weisskopf single particle transition (w.u) [14]. 

1 w.u = 5.94 × 10-6 × A4/3 × B(E2) e2 b2     (9) 

Here e is the charge of electron and b (1 barn = 10-28 square meters) is the unit of area.  

 

RESULTS AND DISCUSSION 

 

Even-even nuclei with Z = 48 and N = 66-70 offer good chances to analyse the behaviour of total low-lying E2 strengths in the 

transitional region between deformed and  

spherical nuclei [15]. To determine the reduced transition probabilities strengths B(E2), the calculated absolute strengths B(E2) of 

the transitions within the ground state band can be fitted to the experimental ones.  

 

Table-3: Electric transition probabilities for 114-118Cd in e2 b2 units. 

 

     The value of effective charge (α2) of IBM-1 was determined by normalizing the experimental data B (E2; 21
+ → 01

+) of each 

isotope. From the given experimental value of transitions (21
+ → 01

+), we have calculated the value of the parameter α2
2 for each 

isotope and used this value to calculate the transitions from 4+ → 2+, 6+ → 4+.  

   Various E2 reduced transition probabilities are examined experimentally [17]-[22]. Theoretical and experimental data for proton 

charge are compared. The theoretical B(E2) values agree with the experimental results within the specified errors.  

Spin Parity 

Ji
+ → Jf

+ 

48Cd114 
48Cd116 48Cd118 

Experimental      (e2 b2) This work      (e2 

b2) 

Experimental    (e2 

b2) 

This work     (e2 

b2) 

Experimental    (e2 

b2) 

This work         (e2 b2) 

21
+ → 01

+ 0.102 0.101 0.113 0.108 0.113 0.116 

41
+ → 21

+ 0.204 0.176 0.192 0.188 0.219 0.194 

61
+ → 41

+ 0.145 0.226 0.212 0.253 0.233 0.243 
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      We have compared the ratio R = B (E2; 41
+ → 21

+) / B (E2; 21
+ → 01

+) of IBM-1 and the experimental values in the ground state 

bands as a function of angular momentum L.  

     The branching ratios B (E2; 41
+ → 21

+) / B (E2; 21
+ → 01

+) is less than 2 represents U (5) symmetry, less than 1.42 for O (6) 

symmetry and zero for SU (3) symmetry. We investigate U (5) symmetry in 114-118Cd isotopes.  

 

CONCLUSION 

 

One can show the two phonon excitations by close the energy level 02
+ from the twice value of the energy level 21

+ and the closest 

of the energy levels (41
+, 22

+ and 02
+). Also, the reduced transition probabilities between 4+ → 2+, 6+ → 4+ of even-even Cd (Z = 48, 

N = 66 to 70) have been studied within the framework of interacting boson model-1. It is found that electric quadrupole reduced 

transition probability are in good agreement with the experimental results for 114-118Cd isotopes. These results are extremely valuable 

for generating nuclear data tables, makes it a good resource. 
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