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Abstract.  

 

Chemical spray pyrolysis (CSP) method was utilized to make TiO2  and  TiO2:Mg films. All of the samples were polycrystalline 

with anatase nanocrystalline structures, according to XRD research. With Mg doping, the crystallite size of TiO2 increased from 

14.29 nm to 18.09 nm. The average particle size of TiO2 was 75.27 nm in AFM images, and the average particle size of (1, 3) 

percent Mg doped TiO2 was 68.24 nm and 47.86 nm, respectively. The bandgap redshift has been observed in Mg doped TiO2 

thin films. 
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Introduction 

 

  Titanium dioxide is an n-type, with a bandgap energy of 3.0 -3.2 eV. With the energy demands, solar cell fabrication using TiO2 

semiconductors is being investigated. Its relative abundance, low-cost, and non-toxicity have made it attractive to wide-ranging 

industrial applications. TiO2 films are also used in the fabrication of solar cells for a variety of reasons, including high clarity in the UV–

Vis field, high refractive indexes, and chemical composition stability [1, 2]. Due to its big bandgap, Pure TiO2 only absorbs light in the 

ultraviolet (UV) spectrum (approximately 3.2 eV). Various modulation techniques, such as surface modification, have been used to 

transfer TiO2's absorption range to visible spectrum[3], size optimization [4,47-67], variation of composition for co-catalyst [5], and 

doping [6] have been pursued. Doping metals or non-metals into TiO2 has been shown to change the visible spectrum's absorption range 

[7, 8]. Doping metals or non-metals into TiO2 has a number of advantages, including narrowing the bandgap to absorb visible spectrum 

light, increased impurity energy levels, regulation of form, scale, and morphologies, and mitigation of recombination processes [9, 10]. 

Inserting metal ions into the TiO2 structure is one of the most effective ways to boost TiO2 optical properties [11,12]. Due to its costless, 

simplicity of preparation, and lack of toxicity, magnesium is an excellent choice for industrial applications. The ionic radii of Mg2+ 

(0.66Å) ions is analogous to Ti4+ (0.68 Å) ions. Therefore, these dopants will quickly replace Ti4+ in the TiO2 matrix without causing 

structural changes. The purpose is to examine the influence of doping of Mg on pristine TiO2 as the electrical and optical properties of 

semiconducting materials are substantially modified by impurity doping [13]. Sol–gel deposition [14], RF magnetron sputtering [15], 
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SILAR [16], CBD [17], and CSP [18-22] are some methods for preparing TiO2 thin films that have been recorded. This paper aims to 

discuss the effect Mg on the optical properties, structure and surface topography of TiO2 films prepared by CSP. 

 

Experimental 

 

   CSP was used to make TiO2 thin films. TiO2 films are deposited from O.1 M of (TiO2Cl2) dissolved in redistilled water. MgCl3 

resolved in deionized water, HCl  drops was joined  to get clear solution. The optimal  conditions was: Glass substrate temperature 

450oC, space between spout and substrate was 28cm, spraying time 9s stopped for 60s to avert cooling, spray average was 5ml/min, and 

N2 was employed as transporter gas.  Thickness is gained by weighing method and was 330 ± 25 nm. Structural properties were 

investigated utilizing  XRD in 2θ range from 20 to 70. AFM was used to implement surface topography. The UV–Vis spectrophotometer 

was used to get optical properties. 

 

Results and discussion 

 

  XRD analysis (Shimadzu XRD 6000) was used to validate the structure and phases. Figure 1 displays the XRD trends. According to 

XRD, there is a pure anatase process as well as anatase, rutile, and brookite in a mixed phase. The peak corresponding to planes (120), 

(201), (132), (241), and (213) corresponds to the standard JCPDS card No (29-1660) of TiO2's anatase, rutile, and brookite (72–0100) 

process. The lack of Mg-related peaks is due to low number of metal ion dopants and Mg ion dispersion in TiO2 lattices [23-25]. Peak 

density of Mg-doped TiO2 polyscales was found to be higher in the XRD pattern causing well crystalline phases that appear to be stable 

and improve as Mg concentration is increased [26].Scherrer's formula is employed to measure the crystallite size D [27-29]:.  

𝐷 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
                − − − − − 1 

    Where, λ is the wavelength, β is FWHM, θ is the Braggs angle and K is a constant (0. 94). When Mg concentration is increased from 

0 to 3 percent, D rises from 14.29 to 18.09 nm. The disparity in ionic radius and ionic charge between Mg2+ and Ti4+ is the reason for 

this and Mg2+ has a different ionic charge than Ti4+. As a result, Mg doping increases the number of oxygen vacancies in TiO2 lattice 

to balance the charge [24]. A reduction in the lattice parameters is also shown by the peak change to higher angles [25]. 

The macrostrain 𝜀 was determined by using following relations [30-32]. 

𝜀 =
𝛽𝑐𝑜𝑠𝜃

4
            − − − − − 2 

                                                                                                                 

The dislocation density 𝛿 was determined by using following relations [33-35]. 

 

𝛿 =
1

𝐷2
                 − − − − − 3 

  As the crystallite size grows larger, the microstrain decreases as well.Table 1 summarizes the details of the structure, it is noted that 

the FWHM diffraction decreased and the intensity peaks were shifted slightly to the higher as Mg concentration rises.  
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Fig.1. XRD styles of the grownfilms. 

 

Table 1. XRD parameters of the intended films. 

Specimen  
2  

)o( 

(hkl) 

Plane 

FWHM 

)o( 

Optical bandgap 

(eV) 

crystallite 

size (nm) 

Dislocations density 

)2lines/m) (1510(×  

Strain 

)3-10(×  

2Undoped TiO 25.35 120 0.57 3.72 14.29 4.89 2.42 

: 1% Mg2TiO 25.31 120 0.51 3.68 16.00 3.90 2.17 

: 3% Mg2TiO 25.27 120 0.,45 3.62 18.09 3.05 1.91 
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Fig. 2. X-ray parameter of the intended films. 

 

    AFM was used to examine the films' surface morphology. Fig. 3 displays 3-dimensional (AFM) images (78 × 78 nm2) of the films 

prepared. We can see densely packed grains in the films with dissimilar grain sizes and uniform surface for different doping 

concentrations. The Surface Roughness Mean Square (RMS), as well as the roughness and average particle size Pav of these films, are 

all enough. The average particle size for pure films is 75.27 nm, with a smaller value of 47.86 nm for films doped in Mg 3 percent 

concentration. As the doping level is increased, the closely packed grain size shrinks, resulting in a decrease in RMS and roughness and 

an increase in surface uniformity. These film surfaces are made up closely packed grains that form a smooth, void-free base. The 

resulting AFM images demonstrate that the films have a nanocrystalline structure as summarized in table 2. 
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Fig.3. AFM of the intended films. 

 

Table 2. AFM parameter of the intended films. 

Samples 
avP 

nm 
aR 

(nm) 

RMS 

(nm) 

2Undoped TiO 75.27 6.85 8.70 

: 1% Mg2TiO 68.24 4.28 7.86 

: 3% Mg2TiO 47.86 3.24 3.20 

 

   Between the wavelengths of 300 and 900 nm, the transmittance(T) spectra of the intended films were measured. The TiO2 film 

deposited at 450oC has a gross transmittance of approximately 90%. The films' optical transmittance was deposited at various doping 

levels as seen in Figure 4. The transmittance decreased with higher doping levels, which may be due to variations in the surface 

morphology and microstructure of TiO2 films.  

 



 

Copyrights @Kalahari Journals  Vol. 7 No. 1(January, 2022) 

 International Journal of Mechanical Engineering  

 

1983 

 
 

Fig.4. Transmittance of pure and TiO2:Mg films with different dopant. 

 

Equation (4) is employed to calculate the value of optical band gap (Eg)  by determining the absorption coefficient (α) [36-38]:  

𝛼 =
𝑙𝑛 (1 𝑇)⁄

𝑑
                     − − − − − 4 

where T and d indicate the overall film transmittance and its thickness. 

The absorption coefficient (α) is measured and plotted against  ℎ𝑣   as depicted in fig. 5.  

Figure 5. shows α of the intended films. The absorption coefficient (α) for Mg-doped films is greater than for undoped films at both 

(ℎ𝑣). Based on Burstein-Moss effect [39], the  absorption edge shifts to a shorter wavelength as the Mg concentration is increased, 

which is associated with a rise in the concentration of carriers in the conduction band. 
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Figure 5. α with photon energy of pure and TiO2:Zn films with different dopant. 

 

 

   The band gap 𝐸𝑔 was determined by using Tauc equation, where k is constant, ℎ𝑣 is the photon energy [40-42]: 

(𝛼ℎ𝑣) = 𝐾(ℎ𝑣 − 𝐸𝑔)
𝑛

      − − − − − 5 

   The plot of (𝛼ℎ𝑣)2against (ℎ𝑣)yielded the band gap values shown in Figure 6.  

As the doping concentration increased,  𝐸𝑔values decreased. Mg doping has risen, resulting in the creation of new localized or donor 

levels. There is a shifted in absorption edge into longer wavelengths, resulting in a decrease in the optical energy gap's value. [43] 
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Fig. 6.  Eg of pure and TiO2:Mg films with different dopant. 

 

   The refractive index (n) variance with wavelength dependency on the film developed at various substrate doping levels, and n was 

determined using equation (6) [44-45]: 

𝑛 =
√1 + 𝑅

√1 − 𝑅
                   − − − − − 6 

where R is the reflectance. Figure 7 shows the plot of the estimated value of n using Eq. 6. For both of the substrates, the refractive index 

n decreases as the wavelength rises. The graphs are representative of natural dispersion, in which the refractive index drops in the (600-

900) nm range because of electronic inter-band absorption for photon energies higher than the smallest band difference in the ultra-

violet field, which reaches into the visible region [46]. The refractive index increases as the concentration of Mg increases, as seen in 

Fig.7. As light is shone on a denser substrate with a higher refractive index, more electric dipoles are stimulated [46]. Equation 8 was 

used to determine the extinction coefficient (k) [47]:             

𝑘 =
𝛼𝜆

4𝜋
                          − − − − − −7 

Figures 8 demonstrate the difference of the extinction coefficient (k) via  λ. The extinction coefficient (k) reduces as wavelength changes 

in the visible area due to normal dispersion of films. TiO2 thin film's excellent surface smoothness is shown by its low extinction 

coefficient in the near infrared as well as visible regions [48]. 

 

 

 

 
Figure 7.  n of the intended films 
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Figure 6.  k of the intended films 

 

 

 

Conclusion 

 

The current study examined the grown of pure and TiO2:Mg with different concentration have been prepared via CSP technique. The 

XRD findings showed that anatase and rutile have well-crystalline phases with stable and smaller polyscales. As the Mg concentration 

is increased from 0 to 3 percent M, the crystallite size grows from 14.29 to 18.09 nm. The AFM findings revealed that the films have a 

nanocrystalline composition and have a uniform topography. The transmittance decreased as the doping level increased, which may be 

due to variations in the TiO2 films' microstructure and surface morphology. The band gap (𝐸𝑔) values declined slightly as doping 

concentration increased. 
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