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In the world, scientific research is being conducted to improve the quality level of digital television images, 

methods for modeling filtration processes and highly efficient control systems in a number of priority areas, including: on 

the formation of mathematical models of filtration processes, improving the methods of wavelet, Fourier, Haar, Walsh-

Hadamard, Karhunen-Loev in increasing the clarity and brightness of images based on linear and nonlinear differential 

equations; creation of methods for eliminating additive, pulsed and adaptive-Gaussian types of noise in images using 

additive and adaptive filtering; methods of algorithms and software for introducing intra-frame and inter-frame image 

transformations; methods of adaptive brightness system control using the Chebyshev matrix series; methods of gradient, 

static and Laplace methods for image segmentation and dividing it into contours; formation of criteria and conditions for 

evaluating image quality. 

Conducting scientific research in the above research areas confirms the relevance of the topic of this article. 

 

Introduction 

Today, in the world in the field of information and communication technologies, close attention is paid to the control 

system for processing digital television images in video information systems. In the conditions of intensive improvement of 

modern information and communication systems to increase the volume and information flow, one of the urgent problems is to 

improve the quality of television images and control the filtration processes from excess information. In this direction, in the field 

of information and communication technologies in the leading countries of the world, the demand and need for improving filtering 

methods and increasing the brightness of digital television images are increasing. 

Currently, one of the most important issues is the formation of digital television images, based on them, the improvement 

of the image processing control system, methods of numerical models and algorithms for solving problems of filtering various 

digital television images using Fourier and wavelet methods. Purposeful scientific research is carried out in this area, including 

close attention is paid in the following areas: improved method of classification and selection of criteria for observing and 

evaluating image quality, methods for controlling image clarity at given values of medium-intensity pixels, creating algorithms for 

modeling the image processing process, methods for controlling the processes of ensuring the level of clarity of a digital image. 

 

Methodology 

Image filtering  ,cL x y by the convolution method with an impulse response  ,h x y the case of a continuous 

image is mathematically described as follows [10; 7-8-p.]: 

     , , , , ,c cL x y L h x y d d     
 


 

     

where  ,cL x y  brightness distribution in the image after filtering, ,   integration variables. When implementing this 

method of filtering digitally, the original image, the image after filtering, as well as the impulse response are represented as arrays 

of numbers, the elements of which are denoted respectively by    , , ,c cL k n L k n и  , ,h k n and the numbers of rows 

and columns-through k and n . In this case, the brightness of the pixels of the filtered image is calculated as follows: 

     

1 1

2 2

1 1

2 2

, , , , (2.1)

K N

c c
K N

k n

L k n L k k n n h k n

 


 

  

        

where K and N  the length of the two-dimensional impulse response in both directions. Values K and N they are selected odd 

in order to avoid shifting the filtered image relative to the original one. 
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When filtering, the image is scanned by a window (pulse response), the dimensions of which are K N pixels.Each 

window sample represents a weighting factor (the value of the impulse response), by which the image pixel covered by this 

window sample is multiplied. In this case, the intensity of the pixel of the filtered image, whose coordinates coincide with the 

coordinates of the center of the window, is found by summing all the products. 

Impulse response  ,h k n when developing a digital filter, it is found as follows. First, the frequency transfer function 

of the analog filter is found  , .x yK   Then, by applying a two-dimensional integral Fourier transform to it, the 

corresponding impulse response is found  , :h x y  

     2

1
, , exp . (2.2)

4
x y x y x yh x y K i x y d d     



 

 

  
    

The impulse response found in this way must be converted into a discrete form by means of its spatial sampling, while 

the step of spatial sampling must be the same as the step of spatial sampling of the filtered image. The next operation to be 

performed on the sampled impulse response is its truncation, i.e., limiting its size by rows and columns to reasonable limits. The 

fact is that frequency transfer functions bounded in the frequency space by boundary frequencies ,xгр ,yгр correspond to the 

impulse characteristics that are unlimited in the coordinate space  , .x y The last and final operation is the normalization of the 

truncated impulse response, as a result of which the sum of its samples should become equal to one, i.e. 

 

1 1

2 2

1 1

2 2

, 1.

K N

K N
k n

h k n

 

 
 

   

Due to the normalization of the impulse response after its truncation, the correct reproduction of the average brightness in 

the filtered image is ensured, which would otherwise be disturbed due to the truncation operation. Turning to the problem of 

truncation of the impulse response, we note that the greater its length, the greater the amount of calculations must be performed 

when implementing digital filtering by the method under consideration. In addition, the edge effect will appear on most of the 

image. Simple truncation of the impulse response by multiplying it by the window function  , ,W k n

удовлетворяющуюусловию[6; 2-3-p.] 

𝑊(𝑘, 𝑛) = { 1 𝑤ℎ𝑒𝑛 |𝑘|, |𝑛| ≤
𝑁 − 1

2
0 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡

 

it leads to the appearance of undesirable "undulation" of the frequency transfer function, as well as to its expansion in the 

frequency domain. To achieve a compromise between the length of the impulse response in the image space and the frequency 

transfer function in the frequency space, a number of windows of a special shape were developed, among which the most famous 

are: the triangular Bartlett window, the Blackman window, the Hahn window, the Kaiser window, and the Hamming window 

satisfying the condition 

𝑊(𝑘, 𝑛) = {0.54 + 0.46𝑐𝑜𝑠
2𝜋𝑛

𝑁 − 1
 𝑤ℎ𝑒𝑛 |𝑛| ≤

𝑁 − 1

2
0 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡

 

 

An important feature of these windows is that when approaching the truncation boundary, the value of  ,W k n it 

gradually decreases, due to which the effects of "undulation" and the expansion of the frequency transfer function are weakened. 

After finding the impulse response  ,h k n it is necessary to investigate it for separability with respect to variables k and n . If 

it turns out that it is separable, i.e. if
     , ,h k n h k h n

 

where    ,h k h n one-dimensional impulse characteristics, then the expression (2.1) it should be converted to the form 

       

1 1

2 2

1 1

2 2

, , . (2.3)

K N

c c
K N

k n

L k n h k L k k n n h n

 


 

  

        
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Calculating values  ,cL k n according to the formula (2.3) allows you to significantly reduce the number of 

necessary mathematical operations compared to the number of mathematical operations when using the formula (2.1). So, for 

example, if when calculating  ,cL k n according to the formula (2.2to determine the value of one sample of the filtered image, 

you need to perform  1K N multiplication operations and   1 1K N  addition operations, then in the case of 

calculation  ,cL k n according to the formula (2.3) the number of necessary multiplication operations is reduced to ,K N

and the number of addition operations is reduced to 2.K N  If you accept 7, 7,K N  what is quite a bit for typical 

filtering problems, even in this case, the gain in the amount of necessary computational costs provided by using the separability 

property of the impulse response will be 3.5 times for multiplication operations and 3 times for addition operations. In fact, the 

gains when using the separability property of the impulse response are significantly greater. It should be noted that a number of 

impulse characteristics, which often have to deal with in practice, are separable. These include: the impulse response described by 

the Gaussian law, the impulse response having a constant value inside a rectangular window, and some others. Next, you should 

pay attention to two more significant circumstances that are important to keep in mind when developing a filter. First, it is 

necessary to set limiters for the brightness value of the filtered image before its presentation with an eight-digit code, preventing it 

from going beyond the accepted dynamic range. The appearance of such brightness values is possible if there are outliers on the 

transition characteristic of the filter, due, for example, to a sharp decline in the frequency transfer function. In this case, the 

absence of limiters will lead to an overflow of the discharge grid, which will lead to the appearance of black dots and spots on the 

light areas of the filtered image, and white dots and spots, respectively, on the dark areas. The use of limiters of the dynamic range 

of the signal from the white side and from the black side allows you to avoid these artifacts, although it introduces the so-called 

restriction noise into the filtered image. 

Secondly, the restriction of the discharge grid leads to the appearance of peculiar distortions — noise. The fact is that the 

convolution filtering algorithm includes a multiplication operation, as a result of which the number of code bits that represent the 

samples of the filtered image is equal to the sum of the number of code bits used to represent the original image and the impulse 

response. Since both the original image and the impulse response are usually represented by eight-bit numbers, the result of 

filtering is an image that requires a sixteen-bit code to accurately represent the intensities. In order to switch to the previous type 

of recording of the filtered image, it is necessary to bring it into an eight-bit representation, i.e. to round off, which causes 

rounding noise. 

The essence of the convolution method with a pulse characteristic in the spectral region is that at the beginning there is 

an array of samples that represents the original image  , ,cL k n in this case, the achromatic image is transformed according to 

some basis into an array of spectral coefficients  , ,cM u v and then each of the spectral coefficients is scalar multiplied by the 

corresponding sample of the discrete frequency transfer function  , :K u v  

     , , , ,c cM u v M u v K u v 
 

where  ,cM u v  spectral coefficients of the filtered image, ,u v  indexes that determine the position of the spectral 

coefficients, as well as the samples of the frequency transfer function in the column and row of the corresponding arrays. At the 

final stage of this filtering method, the found array of spectral coefficients is converted into an array of samples of the filtered 

image  , .cL k n  

The described method is completely analogous to filtering an analog image  ,cL x y in the frequency (spectral) 

domain. It should be noted that in this case, for the original image, its spectrum is found by a two-dimensional integral Fourier 

transform  , ,c x yM   which is then multiplied by the frequency transfer function  , ,x yK   and the spectrum of the 

filtered image obtained in this way  ,c x yM   by the inverse two-dimensional integral transformation the Fourier 

transform is converted to a filtered image  , .cL x y This filtering method can be implemented in an optical way. 

Result 

When filtering an image in the spectral region, you should pay special attention to the definition of the discrete frequency 

transfer function of the filter  , .K u v Usually, the frequency transfer function of a digital filter is determined based on the 
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previously found frequency transfer function of an analog filter  , .x yK   However, you should immediately warn against 

the temptation to get a frequency transfer function  ,K u v by simply sampling the function  , .x yK   The fact is that the 

view  , ,K u v like the view  , ,cM u v it is determined by the basis that is used when calculating the spectral coefficients of 

a digital image. Figure 1 shows discrete amplitude spectra  ,cM u v the same image, but obtained by converting it according 

to two different bases. 

 
Fig. 1. Dependence of the amplitude of the spectral coefficients on the u index for the DCT and DFT 

 

In one case, when determining the spectral coefficients  ,cM u v The discrete cosine transform (DCT) was used, and 

the discrete Fourier transform (DFT) was used in the other. It can be seen from the figure that for two different bases, the discrete 

spectra differ greatly from each other.Therefore, the definition  ,K u v it should be carried out as follows. First, by means of a 

two-dimensional integral Fourier transform based on a known analog frequency transfer function  ,x yK   according to 

(2.2) the corresponding impulse response is found  ,h x y which is subjected to spatial sampling at the same interval as the 

filtered image. After that, the discrete impulse response is normalized so that the sum of all its samples is equal to one. And only 

then is the discrete frequency transfer function calculated  ,K u v by applying to  ,h k n a two-dimensional orthogonal 

transformation using the same basic functions as when calculating spectral coefficients. 

Filtering images distorted by Gaussian noise 

A widespread type of interference is random additive noise, statistically independent of the video signal. The additive 

noise model is used when the signal at the output of the imaging system or at some intermediate stage of the transformation can be 

considered as the sum of a useful signal and some random signal (noise). The additive noise model well describes the effect of 

film grain, fluctuation noise in radio engineering systems, quantization noise in analog-to-digital converters, etc.[10; 23-24-p.]. 

In practice, additive noise is considered as a stationary random field and is characterized by a variance and a correlation 

function. Additive noise can be uncorrelated or weakly correlated. 

The noise sources can be different: 

1. Imperfect equipment for capturing images — a video camera, scanner, etc.; 

2. Poor shooting conditions — for example, strong noises that occur during night photo/video shooting; 

3. Interferenceduringtransmissionviaanalogchannels — interferencefromsourcesofelectromagneticfields, 

intrinsicnoiseofactivecomponents (amplifiers) ofthetransmissionline. 

Let ( , )x m n  - samples (elements of brightness functions) of the original (ideal) image, and ( , )y m n - samples 

(elements of brightness functions) of the original (ideal) image, and 

( , ) ( , ) ( , ), (2.4)y m n x m n m n   

where ( , )m n - samples of a noise random field with a zero mean and a correlation function 
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        , , , , ,B k l E m n m k n l D k l        

where E  - the mathematical expectation operator; D  - noise dispersion; 

( , )k l - two-dimensional delta pulse. 

The intensity of additive noise is characterized by a signal-to-noise ratio 

2 ,xD
d

D



 

where xD  - the dispersion of the signal (image). 

If the effect of noise does not affect the entire length of the image field, but only at randomly located points where the 

values of the brightness function are replaced by random values, then the noise is called pulsed [6; 2-3-p.]. In the image, such 

interference looks like isolated contrast points. 

The most common methods of noise removal: 

1. smoothing filters; 

2. Wiener filters; 

3. median filters; 

4. rankingfilters. 

Suppose we assume that the distorted points are evenly distributed throughout the image field, and the brightness of the 

distorted points has a uniform distribution in a certain range. Pulse noise is characteristic for image transmission systems over 

radio channels using nonlinear modulation methods, as well as for digital image transmission and storage systems. In particular, 

pulse 

noise is inherent in devices for entering images from a television camera. 

The effect of pulse noise can be described by the following mathematical model[4; 7-8-p.]: 

𝑦(𝑦,𝑦) = {
(𝑦,𝑦)𝑦𝑦𝑦ℎ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑦

𝑥(𝑦,𝑦)𝑦𝑦𝑦ℎ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(1 − 𝑦),
 

where ( , )m n - noise field samples that are statistically independent of each other and evenly distributed in the range 

 min max, .   

Thus, the pulse noise is characterized by the probability рpoint distortion (0 1)p  and a range of values 

 min max, .   

The next noise model is multiplicative. The noise model is used when the samples of the observed image are obtained by 

multiplying the samples of the original image by a random signal. This model well describes the diffusivity noise in coherent 

optical and holographic imaging systems. Since the logarithm of the product is equal to the sum of the logarithms of the 

multipliers, the logarithmic element-by-element transformation of the noisy image leads the multiplicative noise model to an 

additive model (2.4). 

A linear model of image observation under interference conditions is a model that takes into account dynamic spatial 

distortions along with additive noise. If such distortions can be described by a spatially homogeneous (shift-invariant) linear 

system with an impulse response ( , )h k l , then the observation model takes the form: 

     ( , ) , , , . (2.5)
k l

y m n h k l x m k n l v m n
 

 

      

The model (2.5) describes distortions caused by the motion of the registration system relative to the object, atmospheric 

turbulence, aberrations of the optical system, inaccuracy of focusing, etc. 

Let's consider the scheme of distortion and filtering (restoration, restoration) of images, presented in fig. 2. 
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Fig.2. Distortion and filtering scheme 

 

The purpose of restoring a distorted image ( , )y m n is getting from it with the help of some image processing

ˆ( , ),x m n which is close to the perfect image ( , )x m n according to the specified criterion. The resulting image as a result of 

processing ˆ( , )x m n we will call it the evaluation of the original (ideal) image ( , )x m n . Let's determine the estimation error at 

each point of the image 

ˆ( , ) ( , ) ( , ), 0, 1, 0, 1, (2.6)m n x m n x m n m M n N        

and also the average quadratic error (COEX) through its square, i.e. the variance of the error: 

   
22 1

ˆ , , . (2.7)x m n x m n
MN

      

Discussion 

Minimum square criterion COEX)  2 min  It is the most universal and common criterion for the quality of 

recovery when designing image filtering algorithms due to its mathematical simplicity. However, this criterion has the 

disadvantage that it does not always agree with the subjective (psychovisual) quality criterion, based mainly on the accuracy of the 

transmission of contours. 

This criterion is constructive and allows us to theoretically calculate optimal (giving minima of the square of the COEX 

system) filtering algorithms for the considered observation models. However, optimal algorithms are very difficult to calculate 

and implement. For example, an optimal Wiener filter requires performing a two-dimensional discrete Fourier transform over a 

field of size, which leads to significant machine time costs. In an interactive automated image processing system, preference is 

given to the so-called quasi-optimal algorithms, which give a minimum of the square of the COEX system in a certain class of 

algorithms with a given structure and differ slightly from the optimal ones according to this criterion. Let's consider the simplest 

linear filtering algorithms based on local processing of a noisy image by a small-sized" window". 

A linear smoothing filter with a finite impulse response can be described by the two-dimensional convolution equation 

 
 

 
,

ˆ( , ) , ( , ) , ( , ). (2.8)
k l W

x m n a k l y m k n l a k l y m n


       

where  ,a k l - coefficients of the linear filter mask (pulse characteristic of the restoring LPP system );W - the "windows" area. 

Coefficients  ,a k l you can choose the optimal way from the condition of minimizing the variance of the filtering 

error, which is the mathematical expectation of the average quadratic error: 

    22 ˆ , , min. (2.9)E x m n x m n       

Suppose that the ideal and noisy images are stationary two-dimensional random sequences with zero mathematical expectations 

and known correlation functions

     

     

     

, , , ,

, , , , (2.10)

, , , ,

x

y

xy

B k l E x m n x m k n l

B k l E y m n y m k n l

B k l E x m n y m k n l

    

    

    

 

It follows from (2.8) and (2.9) that 
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     
  

 
 

 

2

, ,

,

, , ,

2 , , . (2.11)

y
k l W p q W

xy x
k l W

a k l a p q B k p l q

a k l B k l D


 



   

   

   

 
 

Equating the partial derivatives to zero 

 

2

.
,a k l




we find the optimal values of the coefficients  ,a k l , minimizing 

the quadratic form (2.11). At the same time, relatively unknown coefficients  , :a k l we obtain a system of linear equations 

 
 

     
,

, , , , , . (2.12)y xy
k l W

a k l B m k n l B m n m n W


        

In this case, the optimal linear mask is made up of the coefficients  ,a k l ,satisfying the given system and delivering 

a minimum (2.15),  

    , , , .A a k l k l W  
 

The minimum variance of the filtering error corresponding to the optimal mask is equal to 

   
 

2

,

, , . (2.13)x xy
k l W

D a k l B k l 


      

For the special case corresponding to the additive white noise model (2.6), (2.7), the system of equations (2.13) and the 

error variance (2.12) have the form: 

   
 

     
,

, , , , , , ; (2.14)x v x
k l W

a k l B m k n l a m n D B m n m n W


       

 2 0,0 .va D   

Next, the filtration efficiency is measured by the noise reduction coefficient, which is equal to the ratio of the filtration 

error variance to the distortion variance:
   

   

2
2

2 2

ˆ , ,
.

, ,
c

и

E x m n x m n
K

E y m n x m n





   
  

 

It can be shown that in the case of additive white noise 

 0,0 .cK a
 

From the system (2.14), we will find the optimal mask of size 3x3
  

1

, 1
,

k l
A a k l  


 

for filtering additive white noise with an isotropic exponential correlation function of an ideal image: 

 
2 2

, .k l
x xB k l D  

 

With the correlation coefficient of neighboring samples 0,95  and the "signal/noise" relationship
2 10d  and

2 1d  we get, respectively 

0.060 0.100 0.060 0.093 0.101 0.093

0.100 0.360 0.100 , 0.101 0.137 0.101 . (2.22)

0.060 0.100 0.060 0.093 0.101 0.093

A A 

   
   

 
   
      

 

Noise reduction coefficients cK
(maximum permissible) in these cases are equal to 0.360 (для

2 10d  ) and 0,137 

(для
2 1d   ). 

In practice, the measurement or theoretical calculation of the correlation function (2.10), as well as the solution of the 

system (2.12) is not always possible. Therefore, a different approach is often used, based on the construction of a so-called 

smoothing filter. Since noise (both additive and multiplicative) is usually spatially uncorrelated (white), its spectrum contains 
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higher spatial frequencies than the spectrum of an ideal image. This confirms that simple low-frequency filtering can serve as an 

effective means of noise suppression. In principle, any FIR filter with non-negative coefficients has smoothing properties. 

Focusing on the samples of optimal masks (2.15), we can offer the following smoothing masks: 

1 2 3

1 1 1 1 1 1 1 2 1
1 1 1

1 1 1 , 1 2 1 , 2 4 2 . (2.16)
9 10 16

1 1 1 1 1 1 1 2 1

A A A

     
     

  
     
          

 

The coefficients of the masks (2.16) are normalized  
 ,

, 1
k l W

a k l


 
 

 
  so that the interference suppression 

procedure does not cause the average brightness of the processed image to shift relative to the original one. This property is only 

approximately possessed by optimal masks (2.22), since the optimal FIR filter is designed for zero average brightness values of 

ideal and noisy images. As a rule, the absence of pre-centering when processing images with linear masks is equivalent to 

artificially overestimating the actual signal-to-noise ratio and ultimately leads to an increase in the filtration COEX. If the ratio of 

the square of the average value to the image variance is large, then the loss of optimality can be significant. 

Masks (2.16) differ in the degree of noise smoothing (at the mask 1A itmax, on 3A  - min). The selection of the mask 

coefficients should be made experimentally. With an increase in the degree of noise smoothing, the high-frequency component of 

the useful image is also suppressed, which causes the disappearance of small details and smearing of contours. For example, with 

a signal-to-noise ratio
2 10d  using a smoothing mask instead of the optimal mask (2.15) 1A  (2.16) leads to 1.28,cK  and 

the masks 3A  - к 0.380,cK  and with a signal-to-noise ratio
2 1d  the use of these smoothing masks gives, respectively, 

the following noise reduction coefficients: 0.147cK  and 0.164cK  . Thus, a simple smoothing filter can even increase 

the filtering COE if the mask coefficients are selected incorrectly. 

If the required degree of smoothing using a 3x3 mask is not achieved, then large smoothing masks (5x5, 7x7,...) should 

be used. Another method is to iteratively apply a 3x3 smoothing mask: 

         ˆ , , , ... , , ,

R

x m n a k l a k l a k l y m n    
1 4 4 4 4 4 2 4 4 4 4 43

 

where R - the number of passes. 

Note that with an unlimited increase in the number of passes, the image with a constant brightness value: 

   ˆ , , .x m n const E m n      
Therefore, for a specific observation model, there is an optimal number of passes that can be determined experimentally. 

The simplest method for attenuating additive Gaussian white noise in images is to filter it using a low-frequency linear filter with 

a rectangular frequency transfer function. Since the spectral intensity of the image at high spatial frequencies decreases in 

proportion to the square of the spatial frequencies, and the spectral intensity of white noise remains constant, as a result of such 

filtering, the noise energy is weakened to a greater extent than the image energy, but, unfortunately, the sharpness of the 

boundaries on the corrected image decreases. 

When using the Wiener filter, somewhat better results can be obtained in which the frequency transfer function of which 

in the case of noise has the form:

 
 

 

,
, ,

,

c x y

кор x y

c x y ш

S
K

S S

 
 

 



 

where  ,c x yS    spectral intensity of the corrected image, шS  the spectral intensity of the noise, which does not depend 

on the spatial frequencies. 

Another approach to restoring images distorted by noise is to use adaptive filtering. The adaptive filter in question is also a low-

frequency filter, and therefore a filter that smooths not only noise, but also brightness and color boundaries in the image. When 

performing this type of filtering, the neighborhood of each pixel is first analyzed, for which a brightness estimate is made. This 

neighborhood is a pixel-sized window. As a result of this analysis, the average brightness value is found cL inside the window 
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 
/2 /2

/2 /2

1
, ,

K N

c c
K N

L L k n
KN  

  
 

and also the average square of the deviation from the average brightness value  in this window 

 
/2 /2 2

2

/2 /2

1
, ,

K N

cc
K N

L k n L
KN


 

    
 

after that, the evaluation itself is performed (filtering). It should be noted that  includes as a component due to noise ш , so 

is the component caused by a change in brightness in a noiseless image L , in turn, due to its texture and contours. Since these 

components are not mutually correlated, then

2 2 2.ш L    
 

Adaptive filtering is performed in such a way that in those places of the image for which the brightness variance is large 

2 , the filter performs weak smoothing, since a significant proportion of the brightness deviation from the average value in 

these places of the image is due to the presence of light boundaries or texture that must be preserved. In the same places of the 

image for which it is small, the filter performs smoothing to a greater extent, since the deviation of brightness from the average in 

these places of the image is due to noise that needs to be attenuated. In this case, the brightness values of the pixels in the filtered 

image are determined by the formula

   
2 2

2
ˆ , , .ш

c cc cL k n L L k n L
 








    

 

It follows that in the absence of noise, when 
2 0,
ш

  the filtering result is the same as the original brightness value of 

the filtered image. When the noise variance is large, the multiplier before the square brackets in the formula becomes very small 

and the pixel brightness estimate becomes  ˆ ,cL k n approaching the average brightness value cL inside the window. As a result 

of this approach, as a rule, the filtering result is better than with non-adaptive filtering. 
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