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ABSTRACT: Artificial Neural Networks (ANNs) and other data-driven methods are appearing with
increasing frequency in the literature to forecast river levels or discharge at a point in the future. However,
many of these data-driven models are developed for predicting only short lead times, e.g. 1 hour ahead,
where unsurprisingly they perform very well. There have been much fewer documented attempts at
predicting floods at longer, more useful lead times from a flood warning and civil protection perspective.
In this paper ANN and Support Vector Machine (SVM) flood forecasting models are developed for the
Upper Ping catchment at Chiang Mai in Thailand. Raw radar reflectively data are used as inputs to these
models to see whether the lead time of the prediction can be increased beyond 12 hours. The models
without radar data can produce reasonable forecasts up to a maximum of 15 hours ahead but the addition
of radar data extends the lead time up to 36 hours ahead in predicting when the water will overflow the
banks of the river and the flood peak. This study shows that the inclusion of spatially-distributed raw
radar reflectivity data in data-driven models opens up a new, promising area for neuro-hydrological
research.
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1. INTRODUCTION

Flooding is a major, recurring problem in many monsoon countries. Over the last 10 years,
flooding has occurred in Thailand during most monsoon seasons, where the city of Chiang
Mai in particular experienced a severe flood during the summer of 2005. To minimise the
potential loss of life and the damage caused by flooding, early warning systems are needed that
can provide timely and accurate forecasts. These systems require data for their development.
Unfortunately, the historic flood record at Chiang Mai is limited in both record length and in
terms of the number of gauging stations across the catchment so forecasting floods is a challenge.
The Hydrology and Water Management Centre for the Upper Northern region (2005; 2007a, b)
has responsibility for flood warning in the Upper Ping catchment. The technique currently in
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use is based on a correlation between the water stage at an upstream station (P67) and the
downstream station (P1) at Chiang Mai. The maximum time for flood warning using this method
is currently 6-7 hours. In addition to this approach, the Natural Disasters Research Unit in the
Civil Engineering Department of Chiang Mai University (CENDRU) uses a support vector
machine coupled with a hydrodynamic model to predict stage 7 hours ahead at P1 station
(Natural Disasters Research Unit, 2007b). The results are very good for this lead time. However,
with severe floods like that experienced in 2005, longer lead times are needed. There are a
number of conceptual and physical hydrological models in existence for the Ping Catchment
but most of them predict either monthly or daily discharge (Schreider et al., 2002; Vongtanaboon
et al., 2008; Taesombat and Sriwongsitanon, 2006, 2010; Mapiam and Sriwongsitanon, 2009).
Hourly forecasts are needed if an effective operational flood forecasting system is to be
implemented and developed.

Data-driven methods (e.g. Artificial Neural Networks (ANNs), fuzzy logic, support vector
machines, etc.) offer an alternative approach that does not require knowledge of the physical
relationships in the catchment, but instead learns these relationships from the data. Two recent
reviews of the literature reveal a plethora of papers which demonstrate the successful application
of ANNs for rainfall-runoff modelling and other hydrological applications (Abrahart et al.,
2010; Maier et al., 2010). These reviews also cover examples of hybrid, data fusion or soft
computing applications, where different technologies are used together to produce a better
forecast than an individual model (see e.g. See, 2008; Solomatine et al., 2008). There are a few
examples of the use of ANNs in Thai catchments but most have been developed for daily
rather than hourly forecasting such as the models developed by Thaisawasdi et al., (2007).
Another example is the study by Tingsanchali and Gautam (2000), which involved the development
of an ANN to predict floods 1 day ahead using the average daily rainfall of 10 stations, evaporation
based on 4 meteorological stations and runoff data as the inputs. However, the model
underestimated the peak of the flood. This was attributed to the rainfall data, which the authors
argued was not representative of the actual values across the catchment. Sukka (2005) also
used an ANN trained with backpropagation to predict daily water inflows to a reservoir one
and two days ahead using daily precipitation and discharge. However, the results were poor
and there was again a large underestimation of the peak. A finer temporal resolution was
employed by Patsinghasanee et al., (2004), who developed ANNs for a 12 hour lead time but
the same problem with an underestimation of the flood peaks occurred. Longer lead times of
up to 72 hours were predicted using ANNs developed by Ninprom and Chumchean (2009).
However, they did not show any graphical results or provide any information about the
performance of the model in terms of peak prediction. The most relevant piece of research is
the study by Chidtong et al., (2009), who built a series of hybrid forecasting models
(i.e. neuro-fuzzy models optimised with a genetic algorithm) to predict the flood at Chiang
Mai in 2005 using hourly river level data. The models were also applied to a large flood in
Koriyama in Japan. However, for Chiang Mai, the authors used only daily rainfall as an input
as hourly was not available. The results showed that the hybrid model outperformed the other
models to which it was compared (i.e. neuro-genetic and an ANFIS model), and that the hybrid
system could produce a good forecast with a lead time of 12 hours.
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The review above has shown that there are clearly some applications of both physical/
conceptual models and ANNs in the development of hydrological models for the Upper Ping
catchment. However, these models either forecast daily data, or they predict at lead times of
12 hours or less. Here we ask the question of whether longer lead times than those previously
reported in the literature can be predicted for this catchment, in particular for large storms the
size of that encountered in 2005. The main addition is raw radar reflectivity data, which has
not been used before as a direct input to an ANN. In addition, this paper also uses support
vector machines (SVMs) to predict the river level at Chiang Mai for lead times of 18 to 36 hours
ahead. The first set of experiments uses river level data from stations at Chiang Mai and upstream
to predict at a lead time of 18 hours, extending upon that reported in Chidtong et al., (2009), to
determine whether useful results can be obtained using this data source alone. The second set
of experiments then uses raw radar reflectivity data to see whether the lead time of the forecast
can be usefully extended.

2. METHODS

2.1 Artificial Neural Networks

ANNs have been used in hydrology for more than two decades (Abrahart et al., 2009) as well
as in a range of other domains such as financial forecasting and pattern recognition (Hu and
Hwa, 2002; Kamruzzaman et al., 2006). Their roots can be traced back to the work of McCulloch
and Pitts in the early forties and research into Artificial Intelligence (Russell and Norvig, 1995),
where the architecture is loosely based on the human brain. ANNs are comprised of individual
processors called neurons or nodes which contain a simple transformation function. The nodes
are interconnected in layers where the most common arrangement is a single hidden layer.
Each node in the input layer corresponds to a single input variable. These input nodes are then
fully connected via weights to each hidden layer node, where the determination of the optimal
number is often undertaken via trial and error although various heuristics exist (e.g. Minns and
Hall, 1996; Walczak and Cerpa, 1999). The hidden layer nodes are then interconnected by
weights to one or more output nodes. The ANN essentially performs a mapping of an input
vector, x, to an output vector, y, as the input data are fed forward through the network in a
forward pass. Once a network is fully trained, the ANN is a deterministic model. Training
involves giving the network a data set with inputs and known outputs and iteratively adjusts
the weights until the network is capable of predicting the desired output. The network can be
trained to learn the relationship in the data using many different algorithms, where
backpropagation of error is the most common (Rumelhart et al., 1986). A testing data set is
then used to determine how determine how well the NN predicts or forecasts using data it has
not seen before. Bishop (2005) provides a good reference source for further detailed information.

2.2 Support Vector Machines (SVMs)

SVMs allow one to carry out regression without the need for knowing the form of the regression
equation beforehand. As with ANNs, the main aim of a SVM is to find a function f

 
(x) that
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In the simplest case, the solution is linear:

f
 
(x) = �w, x� + b

 
w � Rn, b � R (2)

where w is a weight vector, �w, x� represents a dot product, and b is a scalar. Geometrically, f
 
(x)

represents a hyperplane, w is its normal vector and b is an intercept. One seeks the smallest
possible w among all potential solutions by minimizing the Euclidean norm ||

 
w

 
||2. This condition

approximates y
i
 with f

 
(x

i
). This study uses the SVM as a regression technique by introducing

an �-insensitive loss function, L��(y), where

L��(y) = 0 for | f
 
(x) – y

 
| < � otherwise L� (y) = | f

 
(x) – y

 
| – � (1)

This defines a tube, �, (Figure 1) so that if the predicted value is within the tube, the loss is
zero, while if the predicted point is outside the tube, the loss is the magnitude of the difference
between the predicted value and the radius, �, of the tube.

Figure 1: Prespecified Accuracy  and Slack Variable  in Support Vector
Regression. Taken from Scholkopf (1997)
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is often referred to as a requirement for the flatness in f. The solution for f
 
(x) is obtained

through solving a convex optimization problem for n data points as follows:

Minimize: 21

2
w

Subject to: y
i
 – (�w, x

i
� + b) � �, i = 1, 2, ..., n

(�w, x
i
� + b) – y

i
 � �, i = 1, 2, ..., n (3)

In order to allow for regression errors, slack variables �
i
 and �

i
* (Figure 1) are introduced in

Eq. (4). Only if a data point i lies outside a distance of � from the positive side of f
 
(x

i
), then the

slack variable �
i
 is nonzero. �

i
* is defined in a similar manner for the negative side. To allow for

these errors, additional constraints are introduced and the formulation can then be restated as:

Minimize: 2 *

1

1
( )

2 �
� � ���

n

i i
i

w C

Subject to: y
i
 – (�w

 
.
 
x

i
� + b) � � + �

i
, i = 1, 2, ..., n

(�w
 
.
 
x

i
� + b) – y

i
 � � + �

i
*, i = 1, 2, ..., n

�
i
 � 0 and �

i
* � 0,  i = 1, 2, ..., n (4)

The constant 0 < C < � determines the trade-off between the flatness of f and the level of
deviation greater than � that is to be tolerated (Smola and Scholkopf, 2004). In practice, the C
value is selected by trial and error. The above constrained optimization problem of Eq. (4) is
often solved by the method of Lagrange multipliers. A Lagrangian function is constructed in
the following way:

2
* * * *

1 1

* * * *

1 1

( , , , , , , ) ( ) [ . ]
2

[ . ] ( )

� �

� �

� �
� � � � � � � � � � � � � � � � � � � � �� �� �

� �

� � � � � � � � � � � � � � � �

� �

� �

n n

i i i i i i
i i

n n

i i i i i i i i
i i

w
L w C y w x b

y w x b (5)

where �, �*, � and �* are the Lagrangian multipliers. The solution to the constrained optimization
problem is determined by the saddle point of the Lagrangian function L

 
(w, �, �*, �, �*, �, �*),

which has to be minimized with respect to w, b, � and �* given by:

Condition 1: *

1

0 ( )
�

�
� � � � � �

� �
n

i i i
i

L
w x

w

Condition 2: *

1 1

0
� �

�
� � � � �

� � �
n n

i i
i i

L

b
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Condition 3:
1 1

0 ( )
� �

�
� � � � � �

�� � �
n n

i i
i i

L
C

Condition 4: * *
*

1 1

0 ( )
� �

�
� � � � � �

��
� �

n n

i i
i i

L
C (6)

Substituting (6) into (5) yields the dual optimization problem:

Maximize: * * * *

1 1 1 1

1
( ) ( ) ( ) ( ) ( . )

2� � � �
� � � � � � � � � � � � � � � �� � � �

n n n n

i i i i i i i j j i j
i i i j

y x x

Subject to: * *

1 1

, 0 and 0
� �
� � � � � � � � �� �

n n

i i i i
i i

C C (7)

The solution of the above optimization problem gives the coefficients �
i
* are �

i
. From the

Karush-Kuhn-Tucker (KKT) optimality condition, it is known that some of �
i
, �

i
* will be zero.

The non-zero �
i
, �

i
* are called support vectors. After substituting the equation for w from

Eq. (5), the f
 
(x) of Eq. (2) can be written as

*

support vectors

( ) ( ) ,� � � � � � �� i i if x x x b (8)

where � �1 *
2

1

( ) [ ]
�

� � � � � ��
n

i i i r s
i

b x x x  and x
r
 and x

s
 are any two support vectors.

From Eq. (5) it is clear that w has been completely described as a linear combination of the
training data. Thus, the complexity of the function representation by support vectors is
independent of the dimensionality of the input space, and it depends only on the number of
support vectors. In this study, linear regression is not adequate. For non-linear regression, the
SVM maps the input data into a higher dimensional feature space through some nonlinear
mapping (Boser et al., 1992) where the relationship then becomes linear. Instead of x, the
mapped �

 
(x) is now used in the optimization formulation of Eq. (7). This gives a revised

formulation as follows:

Maximize: * * * *

1 1 1 1

1
( ) ( ) ( ) ( ) ( ( ). ( ))

2� � � �
� � � �� � � �� � � �� � �� � �� � ��

n n n n

i i i i i i i j j i j
i i i j

y x x

Subject to: * *

1 1

, 0 and 0
� �
� � � � � � � � �� �

n n

i i i i
i i

C C (9)

The computation involving �
 
(x

i
)

 
.
 
�

 
(x

j
) is costly so is replaced with a well-behaved kernel

function K
 
(x

i
, x

j
) (Cristianini and Shwae-Taylor, 2000; Cortes and Vapnik, 1995). Mapping to

a higher dimensional space is not unique, and different kernel functions may yield different
results. The selection of a proper kernel functions lies at the core of SVM application. After the
mapping, f

 
(x) becomes:
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3. STUDY AREA AND DATA

The Ping catchment is located in the Northern part of Thailand and covers 5 provinces: Chiang
Mai, Lamphun, Kamphaengphet, Tak and Nakhonsawan. The annual average rainfall varies
from 900 to 1,900

 
mm with an average of 1,125

 
mm (Rodratana and Piamsa-nga, 2008). The

Ping River is the main river in this catchment with a length of 740
 
km (Mapiam and

Sriwongsitanon, 2009). The entire Ping catchment covers approximately 33,898
 
km2 and is

mainly covered by forest (46.5%), agriculture (31.2%) and paddy fields (12.6%). The Ping
catchment is divided into two parts: the Upper and the Lower Ping. The Upper Ping is a large
complex river basin covering two provinces (17° 14� 30�� – 19° 47� 52�� N, 98° 4� 30�� – 99° 22� 30�� E):
Chiang Mai and Lam Phun (Mapiam and Sriwongsitanon, 2009). It has an area of approximately
23,600

 
km2 with 15 sub-catchments (Figure 3). The distance from the source of the river to

Chiang Mai city is 190
 
km (Hydrology and Water Management Centre for Upper Northern

Region, 2007b).

Monsoon conditions in Thailand come from northeastern weather systems (November to
February), which bring moisture from the South China Sea as well as the southwest monsoon
(May to September), which brings rain from the direction of the Indian Ocean (Boochabun

*

support vectors

( ) ( ) ( . )� � � � �� i i if x K x x b (10)

where � �1 *
2

1

( ) [ ( , ) ( , )]
�

� � � � � ��
n

i i i r i s
i

b K x x K x x , and x
r
 and x

s 
are again any two support

vectors. Some commonly used kernels are polynomials of various degrees, radial basis functions,
Gaussian functions, splines and sigmoid functions. Figure 2 illustrates the typical architecture
of a SVM.

Figure 2: Architecture of a Support Vector Machine
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et al., 2004). In this catchment the average regional temperature is approximately 25.4°C, the
maximum is 41.4°C in May and the minimum is 3.7°C in January (Natural Disasters Research
Unit, 2007c). The wettest month is August, which has an average rainfall of approximately
224.4

 
mm, whilst the driest month is January with 7.7

 
mm. The elevation of this basin ranges

from 380m to 2,275
 
m above sea level.

The flooding in Chiang Mai at P1 station is recorded by the Hydrology and Water
Management Centre for the Upper Northern Region. In addition to the main Ping River channel,
there are seven minor rivers in the Chiang Mai area, two of which feed into the Ping above
station P1, where the average annual discharge is 59.38

 
m3/s. Flooding in the city occurs when

water discharge is greater than 460
 
m3/s and water stage level in the main channel exceeds

3.70
 
m above the local datum (304.2

 
msl) (Hydrology and Water Management Centre for Upper

Northern Region, 2007a). The main causes of flooding in this catchment are considered to be
meteorological, fed by monsoonal rainfall. According to the flood records for the past 50 years
in the Chiang Mai city area, the four highest monsoon flood events occurred in 1987, 1994,
1995 and 2005 with water levels of 4.53, 4.43, 4.27 and 4.93

 
m, respectively.

Sophhonphattanakul et al., (2009) investigated the effect of changes in land use on stream
flow in this catchment and found that changing land use through urbanization, industrialization
and deforestation have also contributed to flooding in the Upper Ping catchment. Chiang Mai’s
land use has changed rapidly in response to the National Economic and Social Development

Figure 3: Location of the River Ping and Chiang Mai
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Plan volume 5 (1982-1986) for developing Chiang Mai into a ‘Primate city’ (Chatchawan,
2005). As a result of development, there has been deforestation in the catchment, and the
building of infrastructure in the city and along the Ping River has increased. Engineering work
on the Ping channel as part of flood control works has also changed the flooding level. In the
past the flooding level at P1 was 3.40

 
m. After excavation of the Ping River channel in 2004,

the flooding level increased to 3.70
 
m (Chatchawan, 2005). Flood events more recently have

been higher when compared with previous decades although no flood events occurred in 2007.

The 2005 flood event was triggered by heavy and prolonged rainfall. The biggest flood
event of the year took place between 13-16 Aug 2005. There was heavy rain on 12 August,
with an average of 128

 
mm within a 24 hour period in the north Chiang Mai region. It started

to flood on 13 August with the river rising at a rate of 12-14 cm/hr. The maximum water level
was 4.9

 
m on 14 August and this elevated level remained for 8 hours. As a result, the water

covered a very wide area of the city for up to 51 hours. Smaller flood events then followed in
the month of September.

The input data used in the modelling includes three water level gauging stations (P1, P75
and P67) and radar images, all of which were available at an hourly time scale. The locations
are shown in Figure 4. In the first set of modelling experiments, only water level is used. The
second half of the paper then focuses on the use of input data from radar images.

4. MODEL DEVELOPMENT

4.1 ANN/SVM Models for a Lead Time of 18 hours

Input variables from river gauging stations at Chiang Mai (P1) and upstream (P67 and P75)
were used to develop the NN and SVM models. The training dataset contained storm events
from 2001 to 2004, in particular: 1/08 – 31/10 for 2001 and 2002; 1/09 – 31/10 for 2003; and
1/05 – 31/10 for 2004. Data for 2005 (1/08 – 1/09) were used to test the performance of the
models. A range of potential input variables was derived from the three stations including
levels at time t, t-3, t-6 continuing at 3 hour intervals to t-24 and moving averages over the
previous 6, 12 and 24 hours. Stepwise linear regression was then employed to reduce the
number of input variables from 36 to 12. This method was shown to be an effective input
determination method in previous NN modelling experiments in Chiang Mai when compared
with several other approaches (Chaipimonplin, 2010). There is one rainfall station near P1.
However, experimentation revealed that this input had little effect on the ability of the models
to make more accurate forecasts (Chaipimonplin, 2010).

Once the inputs were selected, feedforward networks with 10 hidden nodes were trained
with backpropagation and Bayesian Regularisation (MacKay, 1992). The advantage of using
this algorithm is that a validation data set is not required for stopping the training process.
Therefore, more data can be used in the training data set, which is particularly relevant to this
case study as the amount of data available for model development is relatively small. Simple
trial and error revealed little difference when a larger number of hidden nodes was used. For
each experiment, 50 models were developed and the average was used as the model prediction
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based on suggestions by Anctil (2007). For the SVM, C was set to 100, a radial basis function
was used as the kernel (with � = 0.1) and � was set to 0.01.

The Root Mean Squared Error (RMSE), the difference in the peak prediction (PDIFF) and
the Coefficient of Efficiency (CE) were calculated for the model predictions using Hydrotest
(Dawson et al., 2007), to match those chosen by Chidtong et al., (2009) so that a direct
comparison could be made. These measures are calculated as follows:

RMSE =

2

1

ˆ( )
�

��
n

i i
i

Q Q

n
(11)

PDIFF = max
 
(Q

i
) – max

 
(Q̂

i
) [for i = 1 to n] (12)

CE =

2

1

2

1

ˆ( )

1

( )

�

�

�

�
�

�

�

n

i i
i

n

i i
i

Q Q

Q Q

(13)

where Q
i
 is the actual value, Q̂

i
 is the model prediction (where i = 1 to n data points), Q

—
 is the

mean of the observed data, and Q
~

 is the mean of the modelled values. The RMSE and PDIFF
are expressed in meters while the CE is a dimensionless coefficient. In addition, hydrographs
showing the model predictions were examined.

4.2 Addition of Radar Data

Radar data covering the Chiang Mai area were obtained from the bureau of Royal Rainmaking
and Agriculture Aviation, which operates five radar stations across Thailand. The CAPPI
(Constant Altitude Plan Position Indicator) method is used to detect precipitation from the
images, which is mainly from the southwest and northeast monsoon in Thailand from convective
activity. The spatial resolution of each image is 1 km, with a ground coverage radius of 240 km.
Radar data are often used to estimate rainfall. However, the radar data require calibration and
there is only one rainfall station available, which is located near Chiang Mai. For this reason,
an alternative approach was employed in which raw radar reflectivity values across the image
were used as inputs to the NN and SVM models.

Radar images were available at 1
 
hr intervals. A 30 � 50

 
km square north of Chiang Mai

was chosen from the radar image to provide sufficient coverage of the river on both sides as
shown in Figure 4. The image was sampled at 12 points covering the river with a distance of
10

 
km between points. The points are labeled as Z11, Z12, etc. to reflect the row and column.

The 3 � 3 pixels directly surrounding each of the 12 points were also extracted in order to
create an average at that point. Each row of points was then further averaged, i.e. Z1 is the
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average of the points Z11, Z12 and Z13. The P1 gauging station is located at the bottom of the
image so the travel time from row Z1 to P1 is the longest. Values were extracted from the radar
images going 4 days backwards in time. The inputs to the ANN and SVM were then chosen by
selecting radar values at those times when the correlation was the highest with the water level
at P1 in order to develop models for predicting the water level at lead times of 24, 30 and
36 hours ahead. Previous values of water level at P1 were also used as inputs. The purpose of
this set of experiments was simply to determine the feasibility of using raw radar data for
extending the lead time of the forecast. The same NN and SVM settings were used as in the
previous experiment.

5. RESULTS

5.1 Model Results for a Lead Time of 18 hours

Table 1 shows the goodness-of-fit statistics for a lead time of 18 hours in order to compare them
with the results of Chidtong et al., (2009), which was for a lead time of 12 hours. It is not
surprising that the results are worse as the attempt to extend the lead time is a harder problem to
forecast using only water level data. The SVM outperforms the NN in terms of the RMSE and the
CE but the difference between the peak and the maximum value prediction is better for the NN.

Figure 4: A 30  50 km Section of the Radar Image with 12 Sample Points
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Table 1
Performance Statistics for the SVM and NN for a Lead Time of 18 hours Compared to the

Performance Reported in Chidtong et al., (2009) for a Lead Time of 12 hours

Model RMSE (m) PDIFF (m) CE

NGO (Chidtong et al., 2009) 0.154 -0.316 0.963

ANFIS (Chidtong et al., 2009) 0.109 -0.246 0.982

Hybrid (Chidtong et al., 2009) 0.100 -0.165 0.982

SVM 0.199 -0.419 0.936

NN 0.213 -0.024 0.927

Figure 5 shows the results of the NN and the SVM for the highest event during the summer
of 2005 in the month of August. These results in the form of hydrographs are actually much
more informative than the global performance statistics. Both the SVM and the NN are quite
late in predicting the start of the flood event. They are also approximately 3 hours late in
predicting a level of 3.7

 
m or the level at which the water overtops the banks of the river. The

SVM then overpredicts the peak while the ANN hits the peak (which explains the PDIFF
statistic) although it generally underpredicts the upper part of the hydrograph so the PDIFF
statistic is somewhat misleading without looking at the performance on the hydrograph. The
falling limb, on the other hand, is predicted well by both models. The SVM generally exhibits
a smoother behaviour while the ANN shows more erratic predictions, especially as evidenced
on the lower levels after the storm. From an operational perspective, both models were late in
predicting the overtopping of the bank but the SVM, with its overprediction of the peak, is
probably a better model. Without rainfall data available to drive the rising limb of the hydrograph,
the maximum lead time that can, therefore, be achieved using water level data from upstream
gauging stations is approximately 15 hours.

Figure 5: SVM and NN Forecasts Compared to the Observed Values for a Lead Time of 18 hours
Using Water Level Data as Inputs. The Dot Denotes the Level at which the

Water Overtops the Bank (3.7 m)
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5.2 Model Results for Longer Lead Times using Radar Data

Figures 6 to 8 show the results of the NN and SVM models for lead times of 24, 30 and
36 hours ahead compared to the observed river levels. No performance statistics are provided
since they do not reveal anything useful in relation to the way the models predict the river level
using the radar data other than to suggest that the models perform very badly with the exception
of PDIFF. However, the hydrographs reveal very interesting patterns. Once again, both the
SVM and ANN predict a late start to the flood event but for lead times of 24 and 30 hours, both
models predict a level of 3.7

 
m (or the level at which the river flows over the banks) on time.

The rising limb of the hydrograph (with the exception of the start) is actually very well
represented. The SVM then does a better job by predicting the peak very well while the ANN
drops off very rapidly. At a lead time of 36 hours, the SVM continues to perform will with
respect to the rising limb and the peak but the ANN is late and overpredicts the peak. The rest
of the hydrograph is very poorly predicted and the behaviour of the SVM and ANN is very
erratic. This may be due to noise in the raw radar reflectivity data that would normally be
removed during the calibration process when estimating rainfall from rain gauges, i.e. the
more usual way in which radar data are utilized. However, it is clear that using the spatial
extent of the raw radar reflectivity data as an input to the SVM and ANN models has the potential
to extend the lead time of the forecast considerably. The SVM shows better performance when
compared to the ANN in terms of predicting the peak of the flood event. However, both models
are able to predict a crucial element needed for flood forecasting and early warning, i.e. the
time at which the water will flow over the banks of the river, with a considerable enough lead
time for civil protection activities to be implemented.

Figure 6: SVM and NN Forecasts Compared to the Observed Values for a Lead Time of
24 hours Using Radar Data as Inputs. The Dot Denotes the

Level at which the Water Overtops the Bank (3.7m)
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6. CONCLUSIONS

Data-driven methods are increasingly being reported as successful methods for rainfall-runoff
modelling or routing applications. However, many of these studies report short lead times that

Figure 7: SVM and NN Forecasts Compared to the Observed Values for a Lead Time of
30 hours Using Radar Data as Inputs. The Dot Denotes the

Level at which the Water Overtops the Bank (3.7m).

Figure 8: SVM and NN Forecasts Compared to the Observed Values for a Lead Time of
36 hours Using Radar Data as Inputs. The Dot Denotes the

Level at which the Water Overtops the Bank (3.7 m)
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have little relevance from an operational flood forecasting and flood warning perspective. For
the Upper Ping catchment, the existing operational models work well up to a lead time of
7 hours. Chidtong et al., (2009) extended this further to 12 hours and showed excellent results.
Experimentation in this paper attempted to extend this lead time further to 18 hours using level
data from stations at Chiang Mai and upstream. However, it was clear that 15 hours is probably
the maximum lead time at which good results can be achieved given water level inputs, unless
investment in additional rain gauging stations is made in the upper part of the catchment. It is
understood that additional gauging stations are now being put in place which could be used for
model development in the future. However, given this lack of data, the question was posed as
to whether radar information could be used to extend the lead time. Models were developed
for 24, 30 and 36 hours ahead using both SVM and NN models. Although the general hydrograph
prediction for the largest flood event in 2005 was erratic, the level at which the river overtops
the banks and the peak prediction was extremely good. This study indicates that using raw
radar reflectivity data as a model input provides a vast data rich potential for improving the
ability to warn and defend against large floods in the future. Extension to other catchments will
be the subject of future research.
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